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Abstract

This paper introduces a factor based on an estimated probability of bankruptcy — a
measure of the risk a typical investor will lose their investment, or the cost of insuring
that investment. Using an underlying model of firm bankruptcy built as a sequence of
two random forests, I demonstrate my bankruptcy risk factor has predictive power in
equity, bond, option and credit default swap markets earning statistically significant
monthly returns of 0.23%, 0.15%, 1.97% and 1.04%, respectively, in all four markets. In
markets with existing common factors I find statistically significant alpha with respect
to these factors.

1 Introduction

Explanations for why some assets receive higher returns than others is the fundamental
question in empirical asset pricing. From an equilibrium theory perspective the answer is
clear — higher returns are demanded by investors for holding assets with higher levels of
risk. Put differently, there exists a pricing kernel such that risk-adjusted prices in terms of
next period payoffs are the same. However, empirical results do not always agree with this
well-studied theoretical answer. In the equity space, the illiquidity factor of Amihud and
Mendelson (1986), the size factor of Fama and French (1993) and the credit default swap
term factor of Friewald et al. (2014) all indicate that higher levels of risk are associated
with higher returns. At the same time, the cash flow volatility factor of Huang (2009), the
profitability factor of Fama and French (2015) and the return on equity factor of Hou, Xue
and Zhang (2015) indicate lower risk is associated with higher returns.

Although factors based on various indirect proxies for risk ultimately disagree on whether
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higher returns are compensation to investors for holding higher levels of risk, more direct
measures of risk produce the same — perhaps surprising — result. Firms with lower levels of
risk are associated with higher average returns. This distress risk literature includes Griffin
and Lemmon (2002) and Dichev (1998) who propose portfolios sorted on Ohlson’s O-Score
(Ohlson, 1980). Dichev (1998), who also proposes portfolios sorted on Altman’s Z-Score
(Altman 1968). Vassalou and Xing (2004) who propose portfolios based on default risk as
implied by Merton’s (1974) option pricing model. Campbell, Hilscher and Szilagyi (2008)
who proposes portfolios based on a logit model estimated failure probability. Avramov et
al. (2009) who propose portfolios based on credit downgrade events, and Asness, Frazzini
and Pedersen (2019) who proposes portfolios based on a measure of firm quality. Despite
the different definitions of distress, the direction of the sort is always the same — firms with
lower levels of distress (either lower bankruptcy or default probability, higher credit ratings
or safer) earn higher expected returns.

The increasing demand by investors for safe, or low risk equity assets during periods of
market downturn is a well-known phenomenon. However, this flight to safety1 during mar-
ket downturns alone is unlikely to be driving the equity factor results since these periods
occur infrequently. To reconcile the equilibrium theory and empirical distress risk results
Asness, Frazzini and Pedersen (2019) present a dynamic model based on residual income
which shows how flight to safety also reasonably occurs during normal market conditions.
In this model fundamental firm value scaled by book value increases with safety. A higher
fundamental value compared to the current book value indicates the firm is undervalued and
future returns are expected to be higher. The market fails to arbitrage away these higher
expected returns because of the difficulty associated with precisely estimating firm safety.

While equity portfolios are by far the most frequently studied, the equilibrium theory asset
pricing result should hold for all assets, not just equities. More than $500 billion in bonds
are traded each day. Additionally, the large trading volumes in options, credit default swaps
and other derivatives show these assets are not redundant with respect to their underlying
equities — it is thus important to study them in adequate detail (Almeida and Freire, 2021).
Fons (1987, bonds sorted by credit rating), Elton et al. (1995, bonds sorted by default risk)
and Bai et al. (2019, bonds sorted on credit rating) all demonstrate that higher risk bonds
are associated with higher expected returns. This difference in the direction of increasing
returns between bonds and equities is driven by the coupon payments of bonds. Lower rated
(higher risk) bonds generally require larger coupon payments, and since accrued interest is
built into bond prices, bonds with higher coupon rates (i.e. faster accruing interest) have
higher rates of return.

Cao et al. (forthcoming) demonstrate that option returns are increasing in bankruptcy
risk as measured by the Altman Z-Score2. This is consistent with the use of options as
levered bets. Conversely, Friewald et al. (2014) show that the credit default swap (CDS)
term structure is positively correlated with equity returns. This implies we should expect

1Also termed flight to quality.
2They find that a higher Z-Score, which implies lower bankruptcy risk, is associated with lower returns.
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higher risk to be associated with lower returns to holding CDS contracts.

In this paper I introduce a new factor based on the probability of firm bankruptcy in each of
the four markets discussed above — equity, bond, option and CDS. This paper differs from
previous studies sorting firms on measures of distress in a number of key dimensions. First,
I use the risk of bankruptcy as the sorting characteristic rather than other forms of distress
risk. Bankruptcy risk is less subjective (it is a discrete, easily definable and observable event)
and the legal process of going through bankruptcy can trigger larger affects on asset values
than other forms of distress risk. Second, I develop a new bankruptcy risk model instead of
using an existing model — such as Altman’s Z-Score or Ohlson’s O-Score — like previous
studies have done. These models are decades old and it is likely the risks facing firms have
evolved over time.

Third, my bankruptcy risk model utilizes machine learning methods, being built as a se-
quence of two random forests. The first random forest selects a parsimonious model in a
data driven way using the feature importance metric of Breiman (2001), and the second ran-
dom forest trains the prediction model. The bankruptcy prediction literature has proposed
hundreds of potential predictors and utilizing a random forest in this way allows me to avoid
having to take an ex ante stance on which predictors are the most important. Parsimony
turns out to be important not only when interpreting the contribution of individual inputs,
but also because a model using the full set of predictors overfits when applied out-of-sample.
While applying the latest machine learning techniques to bankruptcy prediction is not new,
using the output of a machine learning based bankruptcy prediction model to form charac-
teristic sorted portfolios has not yet been attempted in the literature. I will demonstrate
that the increased accuracy achieved by the random forest compared to Altman’s Z-Score3

and a weighted least squares model using the same five variables as the Z-Score leads to
more profitable portfolios.

Notably, the variables selected by the initial random forest for use as bankruptcy predic-
tors — return on assets, scaled and unscaled net income, scaled pretax income and current
assets scaled by current liabilities — are largely absent from the factor literatures in all of
the markets studied here. Interestingly, all five of these variables are accounting ratios or
income statement items even though there are market based variables available for selection.
In their census of the factor zoo, Harvey and Liu (2019)4 find only two factors out of over 500
are generated by sorting on any of these five variables. Likewise, only three of the 319 factors
included in Chen and Zimmerman (forthcoming) and three of the 94 factors included in Gu,
Kelly and Xiu (2020) are generated by sorting on any of these five variables. Furthermore,
only one factor — generated by sorting on Piotroski’s (2000) distress measure which includes

3I choose the Z-Score model as a benchmark because, although it was proposed in 1968, it is still one of
the most widely used models by academics and practitioners. Edward Altman recently partnered with the
Kroll Bond Rating Agency applying his expertise, including use of the Z-score, to the analysis of corporate
default risk. Additionally, the original Z-score paper has 20,553 citations on Google Scholar as of October,
2021.

4The census can be found here: https://docs.google.com/spreadsheets/d/

1mws1bU56ZAc8aK7Dvz696LknM0Vp4Rojc3n61q2-keY/edit?usp=sharing
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return on assets — is deemed important by the machine learning models of Gu, Kelly and
Xiu (2020). This paper therefore also demonstrates the ability of standard financial ratios
to predict asset returns when combined in the correct way.

Lastly, I use my bankruptcy risk model to form characteristic sorted portfolios in four mar-
kets. This differs from previous studies which generally introduce factors in only a single
market at a time (see e.g. Harvey and Liu (2019) for a census of equity factors, Bai et al.
(2019) for a default risk bond factor and Bakshi and Kapadia (2003) for an implied volatility
option factor). While there are papers highlighting anomaly factors which have explanatory
power in multiple markets (see e.g. Asness et al. (2013) which includes bonds, currencies
and commodity futures in addition to stocks; Chordia et al. (2017) which includes stocks
and bonds; Frazzini and Pedersen (2014) which includes bonds and futures in addition to
stocks; Moskowitz et al. (2012) which includes curencies, commodities and bonds in addition
to stocks; and Brooks et al. (2018) which includes options in addition to stocks), this paper
is the first to simultaneously introduce a factor with the same construction in equity, bond,
option and CDS markets. To my knowledge this is the first paper to introduce a distress
risk factor in the CDS market.

The empirical results indicate that my estimated probability of bankruptcy holds predic-
tive power in equity, bond, option and CDS markets. My long-short factor — which I title
SSDi (Safe Subtracting Distressed, for i ∈ (e, b, o, c)) for the equity, bond, option and CDS
factors — produces statistically significant monthly returns of 0.23%, 0.15%, 1.97% and
1.04% in each respective market.

The equity, bond and option factors also produces statistically significant risk adjusted re-
turns when regressed on popular existing factors. For SSDe this includes the CAPM and
the Fama-French five-factor model. For SSDb this includes regressions on the excess bond
market, six common bond factors (excess bond market, two measures of illiquidity, term
structure, default risk and momentum) and the Fama-French equity factors. For SSDo this
includes regressions on a factor formed on Altman’s Z-Score, six common option factors
(implied volatility, illiquidity, size, the difference between implied and realized volatility,
idiosyncratic volatility and book-to-market) and the Fama-French equity factors. Factor
research in the CDS market is still sufficiently new that it is not yet common to perform
spanning regressions using the few proposed CDS factors (see e.g. Pazarbasi (2019) and Lee,
Naranjo and Sirmans (2021)). Using the two pass lasso procedure of Feng, Giglio and Xiu
(2020) I also demonstrate SSDe contributes incremental explanatory power to the cross-
section of returns even in the face of the existing high-dimensional factor zoo.

The remainder of this paper is organized as follows. Section 2 details the creation of the
bankruptcy risk measure. Section 3 presents the data sources used to create the bankruptcy
predictor variables and the equity, bond, option and CDS factors. Section 4 presents the
resulting performance of the equity, bond, option and CDS factors and finally section 5
concludes.
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2 Bankruptcy Risk Measure

This section details the two-step bankruptcy risk model used to create SSDi (for i = e, b, o, c).
There are two purposes in creating a new model of firm bankruptcy. The first is to find a
parsimonious set of predictors without having to take a stance, ex ante, about which among
the extant predictors are most important. The second is that — insofar as the accuracy
of the bankruptcy risk measure matters for the quality of SSDi (for i = e, b, o, c) — it is
important to consider the most relevant risk factors facing firms today. Previous bankruptcy
risk models were tuned to the risks facing firms when those papers were published and may
not be reflective of the risks facing the contemporary firm. One of the benefits of this mea-
sure is that — unlike the Z-score and related measures — it is directly interpretable as the
probability a firm will declare bankruptcy within 12 months.

Before detailing how the bankruptcy risk measure was developed, it is important to ac-
knowledge that the legal process of filing for bankruptcy is not the only possible measure
of firm distress. Failure to pay exchange listing fees, loan default, raising capital for the
express purpose of continuing operations (Jones and Hensher, 2004) and reductions in div-
idends (DeAngelo and DeAngelo, 1990), among others, have also been used as measures of
firm distress. However, many of these measures have some degree of subjectivity or could
be the result of errors or strategic decisions unrelated to distress. For this reason I choose
to measure firm distress as a firm initiating the bankruptcy process.

Perhaps the biggest difficulty for any model of corporate bankruptcy is that the formal
filing of bankruptcy by a publicly traded firm is rare. Even for studies using a small number
of pre-selected bankruptcy predictors, the number of bankrupt firms in the sample can be
very small. Altman (1968) uses a sample of only 33 bankrupt firms. Ohlson (1980) uses
a sample of 105 bankrupt firms. Lennox (1999) uses a sample of 90 bankrupt firms. This
problem is exacerbated here because to be included in the dataset each firm must have
non-missing entries for all variables necessary to create the full set of predictors instead of
the much smaller number of variables used in previous models. This reflects my competing
goals of choosing — in a data driven way — from among the largest possible number of
bankruptcy predictors introduced in the literature and including the maximum number of
bankruptcies possible in order to obtain the most robust model.

There are 457 bankruptcies of publicly traded firms listed in the CRSP/Compustat merged
database between 1990 and 2019. After accounting for missing data, requiring multiple
observations for each firm (necessary because some predictors require differences between
adjacent observations or moving averages), and lagging the dependent variable I was left
with 71 bankrupt firms. Table 1 details this process. Since the year bankruptcy is initiated
occurs only once, there are only 71 bankrupt firm-year observations. However, there are
54,389 firm-year observations for non-bankrupt firms making this a highly imbalanced clas-
sification problem. The 0.13% bankruptcy rate in my sample is of the same magnitude as
the 0.76% bankruptcy rate found in Zmijewski (1984) and is reasonably less considering the
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overall decrease in the corporate bankruptcy rate since the 1980s5. The similarity between
the degree of class imbalance provides a level of validity to the composition of my dataset.
The econometric and machine learning literatures both acknowledge the problems associated
with highly imbalanced classes (see e.g. Fernàndez et al., (2018) and King and Zeng (2001))
although there is no consensus on the best way to resolve the problem.

Table 1: Bankruptcy Predictor Data Sources

Database Variables Firm-Year Obs Bankruptcies
Entire Compustat Universe 1990 - 2020 388,376 457
Compustat Fundamentals Accounting 83,845 171
Compustat Names Industry 83,845 171
Compustat Segments No. Business Segments 83,845 171
CRSP Market 71,270 107
WRDS Ratio Suite Financial Ratios 64,645 96
One Year Lag 54,460 71
K-Nearest Neighbor Match 142 71

Note: This table summarizes the data sources used to create the bankruptcy predictor variables. Beginning
at the top of the table, the decreases in Firm-Year Obs and Bankruptcies indicates the number of observations
lost due to missing data as each subsequent database was added to the dataset.

Consistent with the use of machine learning for modeling bankruptcy, I also use machine
learning to address the class imbalance, utilizing K-nearest neighbors to match a bankrupt
firm with a non-bankrupt firm based on size (i.e. market capitalization). Size matching in
various forms is common in finance and financial economic research. Bennett and Wei (2006)
match on firm size when comparing stocks listed on the NYSE and NASDAQ. Many studies
(see e.g. Novy-Marx (2013)) scale variables by either total assets or market capitalization,
the purpose being to remove the influence of firm size on comparisons. Altman (1968) also
uses a type of size matching in his original Z-Score analysis where the non-bankrupt firms
were chosen as a stratified random sample from a group of firms with the same range of
market capitalization as the bankrupt firms.

Matching in this way does present a potential problem. Small firms file for bankruptcy
at a much higher rate than large firms so matching on firm size means the sample used to
train the bankruptcy risk model has a smaller average market capitalization than the uncon-
ditional average among publicly traded firms. This highlights the importance of choosing a
parsimonious model to avoid overfitting this lower market capitalization training sample.

Using the K-nearest neighbors matched sample of 142 firm-years (71 bankrupt and 71 non-
bankrupt) the two-step random forest procedure is implemented as follows.

1. Using the full list of bankruptcy predictors, train a random forest and evaluate each
feature’s importance using the method of Breiman (2001).

5Source: Administrative Office of the U.S. Courts - accessed here https://tradingeconomics.com/

united-states/bankruptcies
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2. Select the desired number of features from the feature importance ranking. In this
paper I select features until there is no longer a large decrease in importance between
subsequent features. Train a second random forest using only those selected features.

I utilize random forests for two reasons. First, in the setting of hundreds of independent vari-
ables and limited observations, the random forest allows for the measurement of non-linear
relationships while simultaneously being robust to outliers and guarding against overfitting.
Second, since random forests are a nonparametric ensemble learning method it can be rea-
sonably trained using the 142 observations I have, compared to a neural network which
requires a much larger dataset to obtain robust results.

Figure 1: Random Forest Feature Importance

Note: this figure presents the relative feature importance of each bankruptcy predictor based on the impor-
tance metric of Breiman (2001). ROA is return on assets, PI TA is pretax income scaled by total assets, ni
is net income, NI TA is net income scaled by total assets, CA LT is current assets scaled by total liabilities,
P CL is gross profitability scaled by current liabilities, aftret equity is the after-tax return on shareholder
equity, NIAF L CAP is net income after taxes scaled by the lag of capital investment, Indebtness2 is the
square of liabilities scaled by liabilities and shareholder equity, L Int Cov is the log of the interest coverage
ratio.

An additional benefit of using this two-step procedure is that it provides a framework by
which the bankruptcy risk model can be updated to both include newly proposed predictors
and ensure the most relevant predictors are included in the model at any point in time.
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For this study the first forest is grown using 100 trees able to use 16 randomly selected
variables at each node to partition the data following the mtry =

√
p rule (Probst et al.,

2019). That is, the number of randomly selected variables for use in the optimization proce-
dure at each node is equal to the square root of the total number of variables in the data set.
Entropy is used as the criterion function at each node and trees are allowed to grow until
there is only observation in each terminal node6. Figure 1 displays the ten most important
features according to the feature importance measure of Breiman (2001).

If Figure 1 was extended to include all 241 bankruptcy predictors the same pattern would
continue — the difference between the remaining adjacent predictors is very small. Although
I choose the first five predictors as inputs for the second random forest, it is evident from
Figure 1 that there is also a large relative decrease in importance after gross profitability
scaled by current liabilities (P CL). This ratio was omitted from the final model because it
did not increase model accuracy in the test set and parsimony is important to avoid over-
fitting. Parsimony also makes the impact of each individual predictor on the probability of
bankruptcy easier to interpret.

The selection of these five ratios are noteworthy for two reasons. First, although market
based predictors of bankruptcy have existed since Beaver (1968), there has been a recent
shift from once popular accounting ratios to more market based variables as predictors of
bankruptcy due to their enhanced perceived accuracy. Hillegeist et al. (2004) find market
based bankruptcy predictors produce more accurate bankruptcy risk models, while Agarwal
and Taffler (2008) find little difference in the predictive accuracy of market based and ac-
counting ratio based bankruptcy risk models. My findings add support for accounting based
bankruptcy risk models, even in the presence of market based predictors.

The second reason is because portfolios sorted on any of these five characteristics are largely
absent from the discussion of the factor zoo and are rarely, if ever, selected as important fac-
tors by machine learning methods. In their census of the factor zoo, Harvey and Liu (2019)
document only two out of 524 characteristic sorted portfolios use any of the five variables
selected by the random forest — both of which were return on assets. This compares to 34
factors created on the market return, or some transformation thereof. In their influential
paper on the use of machine learning in asset pricing, Gu, Kelly and Xiu (2020) include
only three portfolio sorts based on the variables selected by my random forest out of 94
total characteristics. Additionally, their eight machine learning methods only select one —
Piotroski’s (2000) f-score which includes return on assets in its construction — when ranking
the 20 most important predictors. In fact, their machine learning methods indicate the 10
most important predictors are all market variables (price trends, liquidity and volatility).

To train the second random forest — which produces the estimated probability of bankruptcy

6Although they are not required to grow until there is only one observation in each terminal node. If
there is more than one observation at a node, all belonging to the same class, then there is no need to further
partition the data at that node.
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— I split the data into a training set of 122 observations (61 bankrupt firms and 61 non-
bankrupt firms) and a test set of 20 observations (10 bankrupt firms and 10 non-bankrupt
firms) to evaluate the model’s performance. This forest is grown using 1,000 trees able to
choose from only two of the five selected predictors from the first random forest at each node.
To evaluate the performance of the random forest against previous bankruptcy prediction
models I compare the predictive accuracy of the random forest on the test set with the the
original Altman Z-Score as well as a weighted least squares re-estimation of the coefficients
used in Altman’s Z-Score.

If the risk factors facing firms do, in fact, evolve over time as hypothesized we would expect
to see two things. First, the coefficients on the inputs used by Altman (1968) should be
different from the coefficients on a model with the same inputs, but estimated using my
updated sample of bankrupt and non-bankrupt firms. Second, the random forest should
select different predictors and should be more accurate than both Altman’s Z-Score and the
re-weighted Z-Score. Figure 1 has already shown the random forest selects alternative pre-
dictors than those used in Altman (1968). Equations 1 and 2 below compare the coefficients
of Altman’s Z-Score and the re-estimated Z-Score, while Table 3 compares model accuracy.

Z = 0.012X1 + 0.014X2 + 0.033X3 + 0.006X4 + 0.999X5 (1)

ZWLS = −0.159X1 − 0.021X2 + 0.861X3 + 0.001X4 − 0.179X5 (2)

where X1 is working capital scaled by total assets, X2 is retained earnings scaled by total
assets, X3 is earnings before interest and taxes scaled by total assets, X4 is market value
of equity scaled by total liabilities and X5 is sales scaled by total assets. The change in
sign and magnitude of the coefficients from equation 1 and equation 2 implies an omitted
variable bias since it is unlikely a higher rate of sales per asset (X5, for example) would mean
a higher risk of bankruptcy. This indicates there are missing risk factors from the regression
— that is — risk factors are different today than they were in 1968. Further evidence for
this assertion is presented in Tables 2 and 3.

Table 2 presents the mean values in my updated sample of both the original five ratios
used by Altman (1968) and the five ratios selected by the random forest, along with the t-
statistics and p-values of difference in means tests between the bankrupt and non-bankrupt
groups. Not only are the difference in means tests all statistically significant for the random
forest selected variables, but most of the original Altman ratios are statistically indistinguish-
able from each other. Additionally, two of the Altman variables — earnings before interest
and taxes scaled by total assets and sales scaled by total assets — have group means which
are counter to what we would expect from bankrupt and non-bankrupt firms. It is unlikely
in the full universe of publicly traded firms that bankrupt firms have higher sales per asset
than non-bankrupt firms, and higher retained earnings per asset than non-bankrupt firms.
The fact this is observed in the sample used to update the coefficients of Altman’s Z-score
means even a bankruptcy risk model with these updated coefficients is unlikely to predict
bankruptcy well out-of-sample.
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Table 2: Comparison of Bankrupt and Non-Bankrupt Ratios

Bankrupt Non-Bankrupt t-stat p-value

Altman Z Variables
Working Capital
Total Assets

0.142 0.352 3.61 0.0004
Retained Earnings

Total Assets
-0.604 -0.919 0.51 0.6106

Earnings Before Interest and Taxes
Total Assets

-0.191 -0.043 -2.03 0.0446
Market Value of Equity

Total Liabilities
6127 9886 0.59 0.5518

Total Sales
Total Assets

1.429 1.382 -0.24 0.8043

Random Forest Selected Variables
Income Before Extraordinary Items

Total Assets
-0.29 -0.069 2.85 0.0049

Pretax Income
Total Assets

-0.301 -0.689 2.86 0.0047

Net Income -28.2 -1.76 2.28 0.0241
Net Income
Total Assets

-0.299 -0.089 2.74 0.0068
Current Assets
Total Liabilities

1.38 2.73 2.23 0.0271

I demonstrate in Table 3 this is indeed true. However, the correct sign for the difference in
means tests is only half the battle. For the random forest to predict well, it must be the
case that the random forest selected variables are independent of — that is, uncorrelated
with — these problem Altman variables. Figure 2 confirms this independence. Net income
and current assets scaled by current liabilities are uncorrelated with all eight remaining pre-
dictors. Likewise, all five of the random forest selected predictors are uncorrelated with the
capital turnover ratio — one of the problem Altman ratios. Overall the correlation matrix
indicates my bankruptcy prediction model has the potential to be more accurate than both
the Altman Z-score, and a regression model using the Altman ratios as explanatory variables.

Table 3 confirms the random forest model is the most accurate of the three models compared.
Panel A presents in-sample results and confirms the unique ability of machine learning meth-
ods to fit models in-sample. The bootstrapped standard error of the random forest in-sample
is 0, indicating the model is able to perfectly fit the training data in all 1,000 bootstrapped
samples. The results in Panel B — which displays each model’s predictive accuracy using
the 20 observation test set — are also indicative of evolving risk factors. When applied to a
broad range of modern firms the Z-score predicts bankruptcy only marginally better than a
naive guess. When only the coefficients are updated using weighted least squares (weighting
by market capitalization) the model’s predictive accuracy increases consistent with increased
relevance for contemporary risk factors. Further improvements in predictive accuracy occur
when new predictors are selected by the random forest, again consistent with the notion of
evolving firm risk.
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Figure 2: Correlation Between Altman and Neumann Bankruptcy Predictors

Note: This figure presents a heatmap correlation metrix for the ten variables used in my random forest
bankruptcy risk model and Altman’s Z-Score. ROA is return on assets, PI TA is pretax income scaled by
total assets, ni is net income, NI TA is net income scaled by total assets, CA LT is current assets scaled by
total liabilities, WC TA is working capital (current assets minus current liabilities) scaled by total assets,
RE TA is retained earnings scaled by total assets, EBIT TA is earnings before interest and taxes scaled by
total assets, solve rat is market equity scaled by total liabilities, CTO Rat is the capital turnover ratio (sales
scaled by assets).

In this, admittedly small, test sample the random forest bankruptcy model correctly predicts
80% of both bankruptcy and non-bankrupt firms. This is an impressive feat considering mar-
ket capitalization — a well-known predictor of bankruptcy risk — is not available to help
discriminate between high and low bankruptcy risk firms. Bootstrapped 95% confidence
intervals are in parentheses.

Because of the number of variables necessary to construct the full set of extant predic-
tors and the requirement that there be no missing data, there were not many observations
available to test these three models out-of-sample. As a further robustness test for the ability
of each model to predict corporate bankruptcy, Panel C of Table 3 displays each model’s
predictive accuracy using an expanded test set of 313 firms — 144 bankrupt firms and 169
non-bankrupt firms. This expanded test set was constructed in the same way as the original
144 observation dataset, but instead of deleting missing observations for all of the variables
necessary to construct the full set of predictors used in the first random forest, only missing
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observations for the variables selected by the first random forest are deleted.

Table 3: Bankruptcy Model Predictive Accuracy

Panel (A)
Model Accuracy FPR FNR

Original Altman 53.3% 6.4% 86.9%
(52.0%, 54.6%) (5.3%, 7.6%) (85.8%, 88.0%)

Weighted Least Squares 59.8% 47.5% 32.8%
(59.4%, 60.2%) (46.8%, 48.2%) (32.0%, 33.6%)

Random Forest 100% 0% 0%
(100%, 100%) (0%, 0%) (0%, 0%)

Panel (B)
Model Accuracy FPR FNR

Original Altman 55.0% 40.0% 50.0%
(52.4%, 57.6%) (35.8%, 44.2%) (46.4%, 53.6%)

Weighted Least Squares 60.0% 50.0% 30.0%
(59.5%, 60.5%) (49.2%, 50.8%) (29.2%, 30.8%)

Random Forest 80% 20% 20%
(79.2%, 80.8%) (18.9%, 21.1%) (18.9%, 21.1%)

Panel (C)
Model Accuracy FPR FNR

Original Altman 58.8% 40.2% 42.3%
(58.6%, 59.0%) (40.0%, 40.4%) (42.0%, 42.6%)

Weighted Least Squares 55.6% 24.8% 67.3%
(55.4%, 55.8%) (24.3%, 25.3%) (66.8%, 67.8%)

Random Forest 68.7% 32.5% 29.9%
(68.6%, 68.8%) (32.2%, 32.8%) (29.6%, 30.2%)

Note: This table presents statistics related to the accuracy of the bankruptcy prediction models. Panel (A)

presents the in-sample accuracy, Panel (B) uses a test set of 20 observations, Panel (C) uses a test set of 313

observations. Accuracy is the total percentage of test set observations classified correctly. FPR is the false

positive rate — the percentage of non-bankrupt firms classified as bankrupt. FNR is the false negative rate

— the percentage of bankrupt firms classified as non-bankrupt. The bootstrapped 95% confidence interval

is in parentheses.

It is to be expected that the predictive accuracy of the random forest decreases somewhat
in this extended sample. The firms which comprised the original dataset were the largest of
the bankrupt firms since smaller firms are more likely to have missing data leading to their
removal. As observations were re-added to form the test set used in Panel B, a higher degree
of heterogeneity entered the test set as smaller firms were added back. Despite this added
heterogeneity the random forest prediction model performs well, correctly classifying nearly
70% of firms, well above Altman’s Z-Score and the WLS models. While a nearly 30% false
negative rate may be troubling, the random forest still outperforms other industry standard
models. Additionally, the conservative manner in which the model was constructed — using
only five accounting ratios — ensures the random forest does not overfit when applied to the
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entire universe of publicly traded firms. I will demonstrate in section 4 that this conservative
model specification still leads to trading strategies with increased returns relative to existing
factors.

The power of the random forest bankruptcy probability comes from the fact that despite the
relatively small sample size used to train the model, it can be used to make predictions for
almost all publicly traded companies. This is because the five inputs selected all use common
balance sheet and income statement items which are regularly reported by firms with listed
stocks, bonds and derivatives. Contrast this with a predictor such as the R&D intensity
measure of Franzen et al. (2007) which requires a research and development variable avail-
able for only 32.6% of firm-year observations in Compustat and the benefits become clear.

To this point the random forest has been evaluated on a binary outcome — it either predicts
a firm will go bankrupt or it predicts a firm with remain solvent. Random forests make this
binary assignment using majority rule. If more than 50% of the trees in the forest predict
the firm will go bankrupt than the random forest classifies the firm as bankrupt. However,
this binary classification is not very useful when sorting a continuum of firms on bankruptcy
risk. I convert this binary classification into a probability by recording the percentage of
trees in the forest that predict bankruptcy. For example, if 800 of 1,000 trees predict a firm
will go bankrupt in the next 12 months I say that firm has an 80% probability of bankruptcy.
It is this probability of bankruptcy I use to sort firms in the remainder of this paper.

3 Data

This section documents the data used and the locations where the data were obtained for
both the bankruptcy prediction model and equity, bond, option and CDS prices and char-
acteristics. All data were obtained from Wharton Research Data Services (WRDS) and the
Bloomberg Terminal.

The full set of bankruptcy predictors requires data from Compustat Fundamentals (table
COMP.FUNDA) for accounting characteristics, Compustat Names (table COMP.NAMES)
for industry codes, Compustat Segments (table COMP.SEG TYPE) for primary business
segment, CRSP (table CRSP.MSF) for price and issuance data, and WRDS ratio suite (ta-
ble WRDSAPPS.FINRATIOFIRM). Compustat, CRSP and the WRDS financial ratio suite
were linked using the CRSP-Compustat linking table (CRSP.CCMXPF LINKTABLE). Of
the 241 total predictors constructed, 221 were proposed by the extant literature while I
augment these with 20 ratios from the WRDS financial ratio suite. Table 1 in the previous
section details the number of observations lost as each database was added. The formation
of all predictors proposed by the literature is detailed in Appendix C.

SSDe is generated using monthly returns data from CRSP from July 1962 to December
2019. Only stocks with share codes 10 or 11 and exchange codes 1, 2 or 3 are included in
the equity factor formation. That is, only common stock of U.S. based companies which
trade on the NYSE, NASDAQ or American stock exchanges are included. Following Gu,
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Kelly and Xiu (2020) I do not impose any price or industry filters. They argue this practice
became common in large part because the asset pricing literature found it difficult to model
the return behavior of these firms. In unreported results I impose various forms of these
filters (i.e. $1 price filter, $5 price filter, etc.) and find similar results.

SSDb is generated using data from the Financial Industry Regulatory Authority’s (FINRA)
Enhanced Trade Reporting and Compliance Engine (TRACE). The enhanced TRACE database
contains intraday trade by trade data for corporate bonds in the United States. The en-
hanced TRACE differs from the standard TRACE only by not truncating the volume of
trades at $1 million for high yield bonds and $5 million for investment grade bonds. For
the period July 2002 to September 2020 bond returns (inclusive of accrued interest) are
obtained, already calculated, from WRDS. These returns are generated after applying the
filtering procedure of Asquith, Covert and Pathak (2019)7 and Dick-Nielsen (2009, 2014).
Specifically, the following trades are removed: cancelled and updated trades, trades involv-
ing bonds with variable rate coupons, trades of bonds issued by firms covered by rule 144a,
and trades of bonds other than corporate bonds8. Returns are winsorized at the 1% level to
mitigate the effect of any data errors. Table 4 summarizes the bond data cleaning process.

Table 4: Bond Data Filtering Procedure

Filter Observations Deleted % Deleted
Total Trades (Enhanced TRACE, 2002 - 2020) 272,206,673
Only last 5 trading days 51,341,154 220,865,519 81.14%
Cancelled and withdrawn trades 49,711,282 1,629,872 0.60%
Aggregate to daily and keep last trading day 5,312,388
Total Firm-Month Observations 5,312,388
Variable rate coupon 3,741,408 1,570,980 29.57%
Rule 144a 3,734,105 7,303 0.14%
Corporate bonds only 2,334,856 1,399,249 26.34%
Time to maturity greater than 1 year 2,148,945 185,911 3.50%
Final firm-month observations 2,148,945

Default returns (the bond equivalent of delisting returns in CRSP) are generated following
Cici, Gibson and Moussawi (2017). Specifically, investment grade bonds are given a return of
-17.67% the month of default and high yield bonds are given a return of -40.17% the month
of default. That default returns are not -100% is reflective of the fact that defaulted bonds
are still tradeable and holders of defaulted bonds often received a strictly positive percent
of the principal back. I extend this return series to December 2020 using enhanced TRACE
trade data and the same filtering procedure used by WRDS.

SSDo is generated using data from OptionMetrics from January 1996 to December 2020.
Only call options are used since they are less likely to be affected by early exercise (Christof-
fersen et al. (2018)) and I want the benefits of my options factor to be driven by changes in

7Revised in 2019, originally submitted in 2013.
8Double-counting dealer trades used to be a problem when Dick-Nielsen (2014) first published his paper,

but FINRA has since removed this double-counting from the data.
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option prices, not exercise of the option. Additionally, shorting call options serves a similar
purpose as put options. Monthly returns are formed using the open interest weighted price
across all strike prices from the last trading day of each month. I do not delta-hedge options
due to the costly nature, from a portfolio formation perspective, of delta-hedging.

It is well-known that options data contain observation errors at a rate much larger than
equity data (Todorov (2019), Andersen et al. (2021)). Common causes of these errors in-
clude the true option value lying within the bid-ask spread (minimum tick sizes for options
are usually 5 to 10 times the size of stock minimum tick sizes, and stock price is an input into
option pricing formulas), liquidity provisions offered by market makers and shifts in option
positions which effect only a small range of strike prices. To mitigate the impact of these
observation errors I apply a number of filters to the data before calculating monthly returns.

The filters include a bid-ask spread larger than the bid-ask midpoint (Gharghori et al.,
2017), zero open interest (Goyal and Saretto, 2009), option price less than $0.10 and win-
sorizing all variables at the 0.1% level (Muravyev and Pearson, 2020). Because I do not
want options to expire during the portfolio holding period, I also require options to have a
time to execution of between one and two years and an implied volatility between 0 and 2.
To further mitigate any error in reported options pricing I winsorize the generated monthly
returns at the 0.1% level as well. This has the added benefit of ensuring my results are not
driven by a single outlier return. From January 1996 to December 2017 WRDS has already
pre-processed the data to generate variables such as price — which is not available from
OptionMetrics — and pre-filtered on implied volatility and time to execution. I extend the
series to December 2020 using raw OptionMetrics data. Table 5 summarizes the option data
cleaning process.

Table 5: Option Data Filtering Procedure

Filter Observations Deleted % Deleted
Panel (A) Pre-filtered by WRDS (1996 - 2017): implied volatility ∈ (0,2) and TTE ∈ (366,730)
Total Daily Closing Prices 78,148,602
Call options only 39,994,641 38,153,961 48.82%
Spread larger than price 38,619,531 1,375,110 1.76%
Price less than $0.1 38,498,683 120,848 0.15%
Zero open interest 38,498,683 0 0%
Aggregate across strikes and maturities to daily and keep
last trading day

179,013

Panel (B) OptionMetrics Raw Data (2018 - 2020)
Total Daily Closing Prices 779,601,687
Implied volatility ∈ (0,2) 632,266,392 147,335,295 18.90%
Time to execution ∈ (366,730) 45,179,467 587,086,926 75.31%
Call options only 22,057,664 23,121,803 2.97%
Spread larger than price 20,393,129 1,664,535 0.21%
Price less than $0.1 20,342,661 50,468 0.01%
Zero open interest 16,565,647 3,777,014 0.48%
Aggregate across strikes and maturities to daily and keep
last trading day

36,108

Final firm-month observations 215,121
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Unlike the equity and bond data, delisting or default returns are not a concern for options.
During the period 1996 to 2020, the options of companies with stock that was delisted for
any reason reach a price of zero (or a value that is not different from zero by any economi-
cally or statistically relevant amount) well-before the delisting event. This finding is echoed
in the literature as no paper I am aware of attempts to add delisting returns to options series.

SSDc is generated using single-name CDS price data from Bloomberg for the period Octo-
ber 2001 through December 2020. CDS contracts exist for a much smaller universe of firms
compared to equity and option securities and are generally less liquid. I therefore limit CDS
data to firms belonging to the S&P 500 index in May 2021 to ensure sufficient CDS contracts
trade each month to generate characteristic sorted portfolios. Following Meine et al. (2016)
I use single name CDS contracts with a 5-year term structure because they are the most
liquid. Despite being the most frequently traded, only 237 of the 500 firms belonging to the
S&P 500 have actively traded credit default swaps.

To protect against possible errors in CDS prices I also impose the following filters before
calculating monthly CDS returns which, like option returns, are calculated as the percent
change in price on the last trading day of each month. First I drop all prices above 10,000.
CDS prices are denominated in basis points of the debt position the CDS is insuring. There-
fore a price above 10,000 would imply it costs more to insure the debt than the face value of
the debt. This filter applies to only seven observations, all American Airlines Group during
the market downturn in 2009 and the Covid-19 pandemic in 2020. I then winsorize price at
the 0.1% level before generating monthly returns. Lastly I winsorize the return series at the
0.1% level to ensure the results are not driven by a single outlier. Table 6 summarizes the
CDS data cleaning process.

Table 6: CDS Data Filtering Procedure

Filter Observations Deleted % Deleted
Total Daily Prices - Single Name
5-Year Term Structure

855,342

Prices above 10,000 855,335 7 0.00%
Keep last trading day of month,
require consecutive months

37,907

Final firm-month observations 37,907

4 Bankruptcy Risk Factor

This section presents the returns generated by SSDi (for i ∈ (e, b, o, c)) in the equity, bond,
option and CDS markets. For each of the four factors I present evidence of the statistical
significance and economic benefits to an investor.
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4.1 Equity Factor

To motivate the formation of the bankruptcy risk factor, I first present decile portfolio sorts
on bankruptcy risk as measured by Altman’s Z-score, the WLS update of the Z-score and
the random forest probability of bankruptcy. Below the portfolio returns are the associated
t-statistic as well as the mean probability of bankruptcy within that portfolio.

Looking first at returns, the pattern displayed in the extreme decile long-short portfolio
(column (10)-(1)) is as we would expect given my hypothesis regarding the evolution of
the risks facing firms over time. The portfolios sorted by Altman’s Z-score exhibit a much
stronger pattern when the sample begins in 1962 compared to when the sample begins in
1980 demonstrating the Z-score was more relevant for predicting returns in the 1960s and
70s than it is today. Similarly, the WLS update of the coefficients associated with the five
accounting ratios used by Altman (1968) lead to better defined portfolio sorts, but the rela-
tionship is still stronger in the 1960s and 70s than it is today. This implies both the weights
and inputs used to construct the Z-score are obsolete in the context of predicting equity
returns.

On the other hand, sorts based on the random forest estimated probability of bankruptcy
lead to better discrimination between high and low bankruptcy risk firms — particularly
during the more recent time period. This provides evidence for the benefits of using contem-
porary risk factors to measure bankruptcy probability.

Table 7: Equity Decile Mean Returns and Bankruptcy Risk

Sort Distress (1) (2) (3) (4) (5) (6) (7) (8) (9) Safe (10) (10)-(1)
AltZ 1962 1.13% 1.02% 0.89% 0.93% 0.99% 1.02% 1.01% 0.90% 0.94% 0.90% -0.23%

t (5.67) (5.99) (5.26) (5.12) (5.57) (5.79) (5.68) (5.15) (5.41) (4.28) (1.39)
Z̄ 2.11 4.12 5.46 6.87 8.56 10.76 13.82 18.64 28.43 169.64

AltZ 1980 1.12% 1.14% 1.02% 1.01% 1.11% 1.11% 1.10% 0.99% 1.10% 1.03% -0.09%
t (4.93) (5.94) (5.27) (4.82) (5.33) (5.52) (5.38) (4.84) (5.56) (4.06) (0.44)
Z̄ 2.07 4.20 5.65 7.16 8.23 11.26 14.46 19.49 29.36 185.79

WLS 1962 0.86% 0.84% 0.96% 0.90% 0.94% 0.97% 0.98% 1.03% 1.07% 1.10% 0.24%
t (5.25) (5.09) (5.58) (4.90) (4.81) (4.89) (4.75) (4.90) (4.99) (5.62) (1.41)
Z̄WLS 0.58 0.30 0.23 0.19 0.16 0.13 0.10 0.06 0.02 -0.09

WLS 1980 1.01% 0.91% 1.09% 1.00% 1.10% 1.10% 1.09% 1.23% 1.22% 1.18% 0.17%
t (5.01) (4.76) (5.13) (4.53) (4.74) (4.71) (4.38) (4.82) (4.76) (5.22) (1.31)
Z̄WLS 0.59 0.30 0.23 0.19 0.15 0.12 0.09 0.06 0.02 -0.09

RF 1962 0.97% 0.86% 0.86% 0.95% 1.10% 1.03% 0.86% 0.88% 1.00% 1.08% 0.11%
t (4.05) (4.19) (4.37) (5.50) (6.33) (7.71) (5.17) (5.53) (5.92) (5.28) (0.78)
Z̄RF 0.79 0.58 0.39 0.23 0.13 0.07 0.04 0.03 0.02 0.01

RF 1980 1.02% 0.88% 0.90% 0.94% 1.12% 1.12% 1.00% 0.96% 1.04% 1.20% 0.18%
t (3.60) (3.45) (3.72) (4.61) (5.47) (5.91) (4.94) (4.99) (5.26) (4.64) (1.12)
Z̄RF 0.83 0.64 0.43 0.26 0.14 0.08 0.04 0.03 0.02 0.01

Note: This table presents mean returns for various portfolios formed by sorting firms based on the original
Altman Z-score (AltZ), a weighted least squares re-estimation of the weights used to form the Z-score
(WLS) and a random forest (RF). Rows 1962 calculate values using the sample from 1962 to 2019. Rows
1980 calculate values using the sample from 1980 to 2019. t-statistics are in parentheses. Z̄ represents the
mean of the bankruptcy risk measure used in the respective row for each portfolio. Columns Distress (1) to
(10)-(1) show mean returns for single sorts on bankruptcy risk.
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Despite the better defined division between high and low bankruptcy risk firms produced by
the random forest, the extreme decile long-short portfolio is not statistically significant for
any of the bankruptcy risk models. This is consistent with Dichev (1998) who shows using
both the Altman Z and Ohlson O measures of bankruptcy risk that portfolios sorted on
bankruptcy risk do not necessarily form monotonic return patterns. There are two possible
explanations for this. The first is that investors — familiar with the theoretical relationship
between risk and return — demand risky stocks due to a misunderstanding surrounding
empirical return patterns.

The second is related to the mean bankruptcy probability in each decile portfolio. Ta-
ble 7 shows the bankruptcy probability for the five safest deciles are largely similar — even
the mean bankruptcy probability for decile 5 is only six percentage points higher than decile
6. It is not surprising then that the returns for these decile portfolios are so similar given the
similarity in bankruptcy risk. However, the fact the highest return decile is always among
the three safest deciles does provide further evidence in support of the residual income model
of Asness, Frazzini and Pedersen (2019).

The equity bankruptcy risk factor is formed by sorting firms independently by size and
my random forest estimated probability of bankruptcy. Sorts are done in June using ac-
counting and market equity information released in December of the previous year. Thus
the assumption is made that firm risk information has been fully disseminated and absorbed
by investors within six months of its release. Motivated by the observation that bankruptcy
risk is very similar among deciles 6 through 10, and bankruptcy risk is unreasonably high
in decile 1, the bankruptcy risk factor is formed by going long an equal weighted average of
the five safest deciles within both the large and small size groups, and going short an equal
weighted average of decile two within the large and small size groups. Shorting decile two
instead of decile one avoids the firms with the most uncertain behavior — decile one consis-
tently has the lowest standard errors among the decile portfolios — removing unnecessary
risk from the factor. Dichev (1998) also forms portfolios which have unequal numbers of
portfolios in the long and short legs.

Dichev (1998) also demonstrates that distress risk is unrelated to the size anomaly. If this is
still true, then in small firms should see higher returns than large firms, and safe firms should
see higher returns than distressed firms. This means safe small firms should have the highest
returns, while large distressed firms should have the smallest. Table 8 confirms these return
patterns and presents the average returns and maximum drawdowns of the bankruptcy risk
factor termed SSDe for “safe subtracting distressed”9.

Consistent with Table 7, the same pattern emerges as we transition from the factor con-
structed on Altman’s Z-score to the factor constructed using my random forest bankruptcy
probability. Raw and risk adjusted returns are highest and maximum drawdowns are lowest
for the random forest model. This provides yet further evidence supporting my hypothesis

9A better name may be “safe minus distressed”, but the acronym — SMD — is too similar to the
Fama-French size factor SMB so I avoid it to avoid confusion.
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that it is important to not only update the weights associated with a bankruptcy prediction
model, but also to identify the appropriate contemporary risk factors facing firms.

Table 8: Bankruptcy Risk Equity Factor: 1980 - 2019

Original Altman
High (2) Med (3-5) Low (6-10) SSDe t(SSDe) Max Drawdown

Small 1.23% 1.20% 1.08% 0.10% 0.73 55.0%
Large 0.98% 0.90% 1.09%

WLS Re-estimation
High (2) Med (3-5) Low (6-10) SSDe t(SSDe) Max Drawdown

Small 1.00% 1.03% 1.19% 0.18% 1.73 31.9%
Large 0.89% 0.92% 0.96%

Random Forest
High (2) Med (3-5) Low (6-10) SSDe t(SSDe) Max Drawdown

Small 1.02% 1.13% 1.23% 0.23% 2.29 29.4%
Large 0.87% 0.88% 0.96%

Note: This table presents mean returns for the components of the equity bankruptcy risk factor SSDe as
well as the factor itself. SSDe is formed by sorting firms in June independently by size and my random
forest estimated probability of bankruptcy. The factor is long an equal weighted average of the five safest
deciles of large firms and the five safest deciles of small firms, and short an equal weighted average of the
second riskiest decile of large firms and the second riskiest decile of small firms. The numbers in parentheses
in the columns represent the included deciles from Table 7. Max Drawdown represents the maximum peak
to trough decrease from 1980 to 2019 and does not represent any specific period length.

Although the average monthly returns of SSDe are not huge, they are of similar size to other
equity factors in the literature. Alwathainani (2009) documented a monthly return of 0.21%
for his factor sorted on earnings consistency which is validated by Chen and Zimmermann
(forthcoming). Hirschleifer et al. (2013) documented a monthly return of 0.26% for their fac-
tor based on patents scaled by R&D expenditures, although Chen and Zimmerman find only
0.21% returns on the same factor. Hou and Robinson (2006) documented monthly returns
of 0.26% for their factor sorted on industry concentration, although Chen and Zimmermann
find only 0.21% returns on the same factor.

Additionally, the information contained in SSDe is independent of existing factors. SSDe

has positive alpha — which can be interpreted as risk-adjusted returns since the influence of
other types of risk have been accounted for by the right-hand-side factors — when regressed
on the market or the Fama-French five-factors. Although it is commonplace (as it should
be) to test new factors against influential asset pricing models such as the Fama-French five
factor model, it is still important to test new factors against the CAPM by itself because
alphas can move from insignificant to significant as more factors are added (Jensen, Kelly
and Pedersen, 2021). A successful new factors should achieve a statistically significant alpha
against both.

The coefficient on SSDe is also statistically significant in cross-sectional regressions when it
is included along with 15 other existing factors selected using the two-step lasso procedure
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developed by Feng, Giglio and Xiu (2020). The procedure of Feng, Giglio and Xiu (2020)
was developed as a way to provide evidence of the incremental explanatory ability of a pro-
posed factor for the cross-section of returns in the face of the myriad existing factors in the
literature — often called the “factor zoo”. I use the 135 factors in Chen and Zimmermann
(forthcoming) which form a balanced panel from 1964 to 2019 as a proxy for the factor zoo.
The 15 factors selected by this procedure of summarized in Appendix D, while the SSDe

regressions are summarized in Table 9.

Table 9: SSDe Risk-Adjusted Monthly Returns

CAPM FF5 Zoo
SSDe 0.25% 0.23% 5.34
t(SSDe) (3.39)*** (2.60)*** (5.93)***

Note: This table presents the statistical significance of SSDe when regressed on other popular factors. For

the columns CAPM (regression on the capital asset pricing model) and FF5 (regression on the five Fama

and French factors) the table reports the regression alphas and corresponding t-statistics. The column Zoo

reports the coefficient and t-statistic on SSDe when it is included in cross-sectional regressions along with

15 other factors chosen using the two-step method proposed by Feng, Giglio and Xiu (2020). *** indicates

statistical significance at the 1% level.

The risk-adjusted returns of SSDe remain fairly close to their raw value of 0.23% per month
when regressed on the CAPM and Fama-French five-factor models. The alpha when re-
gressed on the CAPM is 0.25% per month and 0.23% per month when regressed on the
Fama-French five-factor model. The coefficient 5.34 for the Zoo column has a related, but
different interpretation. It is the stochastic discount factor loading on SSDe controlling for
the other 15 selected factors when explaining the cross-section of returns. All three coeffi-
cients are highly statistically significant.

The statistically significant raw and risk-adjusted returns, coupled with the statistically
significant stochastic discount factor loading on SSDe in the presence of the factor zoo pro-
vides strong evidence that SSDe contains information which is orthogonal to existing factors.
It appears the five ratios selected by the random forest, though largely absent individually in
the literature as characteristics used to form portfolios, can provide important information
when combined in the right way.

Figure 3 shows an alternative presentation of the information in Table 8 — the cumula-
tive returns to $1 invested in SSDe in 1980. Despite the relatively slow growth of SSDe

over time (0.23% per month), there are some desirable features of this returns series. First,
SSDe is a leading indicator of market recovery after crashes. The two vertical lines in Figure
3 indicate market low points during the dot com bubble and the Great Recession. SSDe

sees huge increases in value well before the market begins to recover — providing evidence
for the flight-to-safety phenomenon.

Second, the maximum drawdown of SSDe is 29.4% compared to 59% for the S&P 500
index (which occurred during the Great Recession) and 58% for the momentum factor (also
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Figure 3: Cumulative Returns to SSDe Investment Strategy: 1980 - 2019

Note: This figure presents the cumulative returns to $1 invested in SSDe in 1980. The vertical lines indicate
the lowest point of the market downturns during the “dot com” bubble (September 2002) and Great Recession
(February 2009).

during the Great Recession). This makes SSDe in its particularly relevant for leverage in-
vestors, as these investors could apply more than three-times leverage in SSDe whereas even
two-times leverage would completely kill an investors portfolio if investing in the S&P 500
index or momentum.

In Appendix E I present a comparison of SSDe formed using my random forest measure
of bankruptcy risk to portfolio sorts based on Altman’s Z-Score and the WLS update of the
Z-Score. Not only are the cumulative returns lower for the two other models, but neither
are leading indicators of market recovery. This removes one of the main benefits of SSDe as
demonstrated in Figure 4.

Taking advantage of the leading indicator aspect of SSDe, an investor can augment —
for example — a buy and hold strategy as follows. Once investors observe large negative
market returns — -5% in a month — the following month invest in SSDe until index returns
rise above -5%. Implementing this strategy results in an average monthly return of 1.02%
— higher than the raw buy and hold return of 0.80% per month and momentum return of
0.56% per month.

21



It is clear from Figure 4 that the benefits of this hybrid strategy come from significantly
shortened period of large negative returns. By moving investments into SSDe after observ-
ing large decreases in market returns, investors both avoid continued negative buy and hold
returns, and are fully invested in the safe stocks before other investors drive up prices. This
strategy results in an annualized Sharpe ratio of 0.90, higher than the annualized Sharpe
ratios of the buy and hold return (0.65) and momentum strategy (0.44) during the same
period.

Figure 4: Cumulative Returns to SSDe Augmented Buy and Hold Return: 1980 - 2019

4.2 Bond Factor

As with SSDe, I motivate the formation of the bond bankruptcy risk factor by first presenting
decile portfolios of bonds sorted on the random forest estimated probability of bankruptcy.
Since bond trade data is only available through enhanced TRACE beginning in 2002 I cannot
compare portfolios formed in the 1960s and 1980s as I did for the equity decile portfolios.
Additionally, the relative return distribution for the portfolios sorted by Altman’s Z-score,
the WLS update of the Z-score coefficients and the random forest estimated bankruptcy
probability are very similar to the pattern observed in the equity market. For clarity of
exposition I therefore only present results for the portfolios sorted on the random forest
probability of bankruptcy. These results are displayed in Table 10.
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Table 10: Bond Decile Mean Returns and Bankruptcy Risk

Sort Distress (1) (2) (3) (4) (5) (6) (7) (8) (9) Safe (10) (1)-(10)
RF 2002 0.75% 0.69% 0.73% 0.65% 0.61% 0.58% 0.57% 0.56% 0.58% 0.58% 0.17%

t (4.35) (4.70) (5.62) (5.19) (5.48) (5.08) (5.06) (5.11) (5.42) (5.33) (1.50)
Z̄RF 0.79 0.56 0.39 0.26 0.17 0.11 0.06 0.04 0.02 0.01

Note: This table presents mean returns for various portfolios formed by sorting firms based on my random
forest produced probability of bankruptcy. The row RF 2002 presents mean returns for each decile. t-
statistics are in parentheses. Z̄ represents the mean of the bankruptcy risk measure used for each portfolio.

Unlike equity returns, bond returns are not driven by changes in the clean price of bonds,
but rather by accrued interest and coupon payments. It therefore makes sense that we do not
observe the same high returns to bonds with low bankruptcy risk, driven by the perceived
undervaluation of safer assets as argued by Asness, Frazzini and Pedersen (2019). Bonds is-
sued by companies with higher default risk — which is related to my measure of bankruptcy
probability — must generally pay higher interest rates. This leads to higher returns on
bonds with high bankruptcy (default) risk. However, Table 10 still highlights the increased
uncertainty surrounding returns to the riskiest bonds. The relatively low t-statistic for the
most distressed decile of bond returns implies highly distressed firms default at higher rates
than safer firms.

The pattern of returns across the cross-section of bonds is very similar to the cross-section of
equities, albeit with returns increasing in the opposite direction. Specifically, while returns
are not monotonically decreasing in safety, there is a clear pattern of decreasing returns
until the probability of bankruptcy reaches approximately 10%. After that point there is
materially no difference in returns among the remainder of the decile portfolios resulting
in a difference in extreme decile returns which is not statistically significant. There is one
more element of note in Table 10 before I motivate formation of the bankruptcy risk bond
factor. The three riskiest deciles have lower mean levels of bankruptcy risk than their equity
counterparts. This makes sense, since these firms would have to pay the highest interest
rates on bond issues, raising capital via the stock market may be a cheaper alternative.

Table 11: Bankruptcy Risk Bond Factor: 2002 - 2020

High (1-3) Med (4-5) Low (6-10) SSDe t(SSDe) Max Drawdown SR
Small 0.74% 0.65% 0.59% 0.14% 2.77 6.3% 0.69
Large 0.69% 0.56% 0.55%

Note: This table presents mean returns for the components of the bond bankruptcy risk factor SSDb as
well as the factor itself. SSDb is formed by sorting firms in June independently on size and my random
forest estimated probability of bankruptcy. The factor is formed by going long an equal weighted average
of the three riskiest deciles for large firms and the three riskiest deciles for small firms, and going short an
equal weighted average of the five safest deciles for large firms and the give safest deciles for small firms.
The numbers in parentheses in the columns represent the included deciles from Table 10. Max Drawdown
represents the maximum peak to trough decrease from 2002 to 2020 and does not represent any specific
period length.

SSDb is formed in the same spirit as SSDe. That is, in June firms are sorted indepen-
dently by size and my random forest estimated probability of bankruptcy. Motivated by the
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information in Table 10, SSDb is formed by going long an equal weighted average of the
three riskiest deciles within both the large and small size groups, and going short an equal
weighted average of the five safest deciles within the large and small size groups. The only
difference between the formation of SSDb and SSDe — that the three riskiest deciles are
included in the bond factor instead of just decile 2 — reflects the fact that bonds have both
built-in compensation for extra risk in terms of higher interest rates, and lower probability
of bankruptcy compared to the equity portfolios for the three riskiest deciles.

Crawford et al. (2019) demonstrates that size is a priced risk factor in the bond mar-
ket where smaller firms — being riskier — require higher interest rates and therefore have
higher returns. I should therefore find that smaller firms have higher returns than larger
firms for a given level of bankruptcy risk, and within size groups higher bankruptcy risk
should result in higher returns. Table 11 shows this is indeed the case. The result is the
bond factor, termed SSDb (where the b is for “bond”) earns a statistically significant 0.15%
return per month.

Table 12: SSDb Risk-Adjusted Monthly Returns

Market Bond6 FF6 FF-Bond12
SSDb 0.11% 0.08% 0.08% 0.08%
t-statistic (2.27)** (2.08)** (2.08)** (2.16)**

Note: This table presents the statistical significance of SSDb when regressed on other popular factors.

Market indicates a regression on the aggregate bond market return. Bond6 indicates a regression on six

standard bond market factors. FF6 indicates a regression on the Fama-French six equity factors (including

momentum). FF-Bond12 indicates a regression on all 12 previous used equity and bond factors. ** indicates

statistical significance at the 5% level.

Like SSDe this is not an enormous monthly return. However, it is independent of existing
bond and equity factors in the literature. Following Bai, Bali and Wen (2019), I regress
SSDb on both equity and bond factors to obtain alpha, or the risk-adjusted returns. Con-
trolling for the aggregate bond market return in excess of the risk-free rate, SSDb earns a
positive 0.11% per month. This decreases to a 0.08% risk-adjusted monthly return when five
other standard bond factors are added. These factors are bond momentum (Jostova et al.,
2013), two measure of liquidity (Bao, Pan and Wang, 2011; and Bai, Bali and Wen, 2019)10,
and default and term factors (Elton et al., 1995).

SSDb maintains a risk-adjusted return of 0.08% per month when regressed on the Fama-
French six equity factors and when both equity and bond factors are included in the regres-
sions. That SSDb consistently maintains statistically significant risk-adjusted returns while
moving from a univariate regression on the excess bond market return to a 12 factor model
provides strong evidence for the independence of the information it contains.

10I include two liquidity factors because Bai, Bali and Wen (2019) include one liquidity factor in their
spanning regressions but they also introduce a new liquidity factor. Since neither liquidity factor subsumes
the other in a univariate spanning regression I chose to include both.
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Figure 5: Cumulative Returns to SSDb Investment Strategy: 2002 - 2020

Note: This figure presents the cumulative returns to $1 invested in SSDb in 2002. The vertical lines indicate
the lowest point of the market downturns during the “dot com” bubble (September 2002) and Great Recession
(February 2009).

Figure 5 provides an alternative presentation of the information contained in Table 11. The
source of the dips in 2009 and 2020 are obvious — the Great Recession and the onset of the
Covid-19 pandemic. The source of the dip in 2016-2017 is less obvious, although it is com-
mon in existing bond factors. As with SSDe, I present a comparison of SSDb with factors
generated by sorting on Altman’s Z-score and the WLS update of the Z-score coefficients in
Appendix E.

While the primary benefits of SSDe are from its role as a leading indicator of market re-
covery in the equity space, Figure 5 shows that SSDb clearly does not lead recoveries in
the bond market. The major benefits of SSDb come from the small maximum drawdowns
during periods of systemic distress. These small drawdowns — the largest of which is only
6.3% compared to 11.1% for the bond market and 20.9% for downside risk — and low levels
of overall volatility are such that SSDb has a Sharpe ratio of 0.69 despite averaging only a
0.15% monthly return. Motivated by the relatively small decreases during periods of sys-
temic distress, a similar strategy to the one proposed in section 4.1 is proposed here — using
SSDb to augment an existing investment strategy.
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Specifically, beginning with the downside risk factor (DRF) of Bai, Bali and Wen (2019),
hold the DRF portfolio until observing a monthly decrease of -1%. In the subsequent month
transfer the investment to SSDb until returns on DRF rise above -1%, then return the in-
vestment to DRF the following month. In the same way the equity hybrid strategy took
advantage of SSDe as a leading indicator, this strategy takes advantage of SSDb as a safety
net during periods of distress as the bottom of the downturn is less severe than that of
other strategies. Implementing this strategy results in monthly returns of 0.71% per month
compared to 0.66% for DRF and 0.38% for the market. The benefits of this strategy can
also be seen graphically in Figure 6 and in the associated Sharpe ratio which is 1.20 for this
bond hybrid strategy, compared to 1.02 for DRF and 0.98 for the aggregate bond market.
Importantly, any bond factor strategy can be substituted for DRF. DRF was chosen for
illustrative purposes because of its large raw return and high Sharpe ratio.

Figure 6: Cumulative Returns to SSDb Augmented Investment: 2002 - 2020

4.3 Options Factor

In the same way I motivated the formation of SSDe and SSDb by first looking at decile
portfolios sorts, I motivate the options bankruptcy risk factor by first examining the average
returns and bankruptcy risk of the cross-section of call options. It is important to redo this
exercise for the cross-section of call options because there are fewer firms with actively traded
options than there are with actively traded stocks (there are 21,803 firms with returns data
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appearing in CRSP at least one month during the period 1996-2020, but only 2,706 firms
with eligible options returns). This could impact the mean bankruptcy risk in each decile of
the cross-section, impacting how the options bankruptcy factor is formed.

Since the Ivy OptionMetrics database only has options data beginning in 1996 I cannot
compare portfolios formed in the 1960s and 1980s like I did for the equity decile returns.
Additionally, the relative return distribution for the portfolios sorted by Altman’s Z-score,
the WLS update of the Z-Score coefficients, and the random forest probability of bankruptcy
are very similar to the pattern observed for the equity factor. Therefore for clarity of ex-
position I only display results for the portfolios sorted on the random forest bankruptcy
probability. These results are displayed in 13. The equivalent results for portfolios formed
on Altman’s Z and the WLS models are available upon request.

Table 13: Option Decile Mean Returns and Bankruptcy Risk

Sort Distress (1) (2) (3) (4) (5) (6) (7) (8) (9) Safe (10) (1)-(10)
RF 1996 9.20% 9.52% 8.77% 8.08% 7.93% 6.94% 7.57% 7.83% 7.93% 7.58% 1.62%

t (6.44) (6.18) (6.09) (6.48) (5.65) (5.78) (5.94) (6.17) (5.89) (5.11) (2.42)
Z̄RF 0.86 0.70 0.50 0.31 0.17 0.09 0.05 0.03 0.02 0.01

Note: This table presents mean returns for various portfolios formed by sorting firms based on my random
forest produced probability of bankruptcy. The row RF 1996 presents mean returns for each decile. t-
statistics are in parentheses. Z̄ represents the mean of the bankruptcy risk measure used for each portfolio.

Call option returns like equity returns are not monotonic. Despite this fact, the pattern in
the cross-section of call option returns is stronger than for the equity market reflecting the
increased sensitivity of options investors to subtle differences in risks facing underlying asset
returns. Despite the stronger pattern in mean returns, the pattern of mean bankruptcy risk
for each portfolio is largely similar to the equity portfolios. Deciles 6 through 10 have very
similar probabilities of bankruptcy and decile 1 has a very high probability of bankruptcy.
This pattern suggests portfolio formation consistent with SSDe.

Table 14: Bankruptcy Risk Option Factor: 1996 - 2020

High (9) Mid (6-8) Low (1-5) SSDo t(SSDo) Max Drawdown SR
SSDo 9.52% 8.32% 7.55% 1.97% 3.01 46.8% 0.61

Note: This table presents information related to the option bankruptcy risk factor. SSDo is formed by
sorting firms in June on my random forest estimated probability of bankruptcy into decile portfolios and
going long call options in the second riskiest decile and going short on an equal weighted average of the five
safest deciles. SSDo is the mean monthly returns from the long-short bankruptcy risk factor, t(SSDo) is
the monthly t-statistic associated with the factor. Max drawdown is the maximum peak-to-trough decrease
over the full 22 year sample without regard to a specific time period. SR is the annualized Sharpe ratio.
The number is parentheses ((6-8) for example) represent the component decile portfolios from Table 13.

The options factor is formed on a univariate sort of the random forest estimated probability
of bankruptcy. Specifically, each year firms are sorted in June on my bankruptcy risk proba-
bility generated with accounting and market equity information released in December of the
previous year. The options factor — titled SSDo where the subscript is for “options” — is
formed by going long on call options belonging to the second decile of Table 13 (avoiding the
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most distressed firms which have an unreasonably high probability of bankruptcy) and going
short (shorting call options is very similar to, but not exactly the same as, going long on a
put option) on an equal weighted average of call options for the five safest deciles of Table 13.

Because SSDo is formed using a univariate sort instead of an independent bivariate sort
on both bankruptcy risk and size, there could be a concern that the returns to SSDo are
driven by size instead of bankruptcy risk since size is such a strong predictor of bankruptcy.
I demonstrate in Table 15 that SSDo is independent of existing option factors — including
size. However, to further quell fears, I also note that portfolio turnover is much higher for
the bankruptcy risk deciles, than size deciles. The largest firms — as proxied by S&P 500
membership have an annual turnover of only 2.3%, while the safest bankruptcy decile has
an annual turnover of 28.1%. This makes it very unlikely returns to SSDo are driven by the
size anomaly.

Like the cross-section of bond returns, the cross-section of call option returns are increasing
in the opposite direction of equity returns. The reversed direction of the call option sort can
be explained by two risk related concepts — risk aversion and prudence (Kimball, 1990). The
variance risk premium of equity options is negative (Christoffersen et al. (2018)), implying
the expected variance is higher under the risk neutral distribution than under the physi-
cal distribution, driving returns for out-of-the-money (OTM) call options. Additionally, as
bankruptcy risk increases (going from column (10) to column (1) in Table 13) investors with
negative prudence drive up the price of OTM call options as speculators buy them to use as
levered bets.

Table 15: SSDo Risk-Adjusted Monthly Returns

Z Option6 FF6
SSDo 1.33% 2.14% 2.92%
t(SSDo) (2.17)** (2.76)*** (4.71)***

Note: This table presents the statistical significance of SSDo when regressed on other popular factors.

Column Z regresses SSDo on an option factor generated by sorting firms on Altman’s Z-score. Column

Option6 regresses SSDo on six option factors (implied volatility, illiquidity, size, the difference between

implied and realized volatility, idiosyncratic volatility and book-to-market). Column FF6 regresses SSDo

on the six Fama-French equity factors. t-statistics are in parentheses. ** indicates significance at the 5%

level, *** indicates statistical significance at the 1% level.

The values in Table 14 — the largest among the four factors introduced in this paper —
compare favorably to other popular investment vehicles. Again using as example the mo-
mentum factor and the buy and hold S&P 500 index return, a mean monthly return of 1.97%
over the period 1996 to 2020 is larger than the 0.41% and 0.67% mean monthly returns of
momentum and buy and hold strategies, respectively.

While the raw returns of SSDo are impressive, following Cao et al. (forthcoming) and
Horenstein et al. (2020) I regress SSDo on existing equity and option factors to verify
the information SSDo contains is independent of existing factors in the literature. Unlike
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the equity and bond literatures, there are very few anomaly based option pricing models
from which to pick factors for spanning regressions. I therefore choose to regress SSDo on
the Altman Z option factor, a six option factor model (implied volatility, illiquidity, size,
the difference between implied volatility and realized volatility, idiosyncratic volatility and
book-to-market) and the Fama-French six equity factors. These results are presented in
Table 15.

The first column of Table 15 demonstrates SSDo provides information that is indepen-
dent from a factor generated using Altman’s Z-score. It is worth noting that regressing a
Z-score option factor on SSDo produces a statistically insignificant alpha, indicating SSDo

subsumes an Altman Z option factor. Risk-adjusted returns are larger than raw returns as
evidenced by regressing SSDo on a set of six factors from both Cao et al. (forthcoming) and
Horenstein et al. (2020). Regressing SSDo on the six Fama-French equity factors results
in huge statistically significant risk-adjusted returns of 2.92% per month. Overall, Table 15
provides strong evidence that SSDo provides information which is orthogonal to existing
option and equity factors.

Figure 7: Cumulative Returns to SSDo Investment Strategy: 1996 - 2017

Figure 7 is the call option analogue to Figures 3 and 5 and shows the cumulative return to
$1 invested in SSDo in January 1996 compared to $1 invested in the S&P 500 index and $1
invested in momentum in the same month. In Appendix E I present a graphical comparison
of SSDo with call option factors generated from both Altman’s Z-Score and a WLS update
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of the Z-Score coefficients. An investment of $1 in 1996 would be worth almost $70 by the
end of 2020. This cumulative return dwarfs both buy and hold and momentum.

4.4 Credit Default Swap Factor

Analogous to the previous three factors, I motivate the formation of the CDS factor by first
looking at average returns and bankruptcy risk for the decile cross-section of CDS portfolios
sorted on the random forest probability of bankruptcy.

Before describing the decile returns presented in Table 16, it is important to emphasize the
differences in what “returns” mean for stocks, bonds and call options compared to CDSs.
When the asset in question is a stock, bond or call option, monthly returns represent the
percentage difference between the price an investor can purchase the asset for and the price
an investor can sell the asset for after a period of one month. CDS prices, on the other
hand, are denominated in basis points. They are the price, in basis points, of the debt
position being insured which the buyer of CDS protection pays the seller of CDS protection
annually11. Therefore, CDS returns indicate the percent difference in the basis point rate
of purchasing CDS protection in month t and then immediately selling that same level of
protection in month t+1. Going long a CDS implies buying CDS protection, while shorting
a CDS implies selling CDS protection.

Table 16: CDS Decile Mean Returns and Bankruptcy Risk

Sort Distress (1) (2) (3) (4) (5) (6) (7) (8) (9) Safe (10) (1)-(10)
RF 2002 0.31% 0.38% 1.11% 2.12% 1.68% 1.52% 1.60% 1.94% 1.52% 1.58% 1.27%

t (0.29) (0.44) (1.16) (2.05) (1.97) (1.87) (1.75) (2.22) (1.57) (1.60) (1.46)
Z̄RF 0.85 0.70 0.48 0.28 0.18 0.10 0.06 0.03 0.02 0.01

Note: This table presents mean returns for various portfolios formed by sorting firms based on my random
forest produced probability of bankruptcy. The row RF 1996 presents mean returns for each decile. t-
statistics are in parentheses. Z̄ represents the mean of the bankruptcy risk measure used for each portfolio.

CDS returns are much more volatile than stock, bond or call option returns, as evidenced
by the small t-statistics in Table 16 — only three of the decile portfolios have statistically
significant returns. Despite this, there is a much clearer pattern of increasing returns to
safety than exists in the cross-section of equity returns. This reflects investor overreaction to
changes in perceived risk for firms which were considered safe, while similarly sized changes
in perceived risk do not impact firms which investors already deemed risky.

There are unique challenges to the formation of SSDc that do not exist for the other three
bankruptcy risk factors. While there are only approximately 10% as many firms with call
option contracts compared to firms with exchange listed common stock, the cross-section of
CDS contracts is formed using only the 237 firms in the S&P 500 index which have CDS
contracts trade at any point between 2002 and 2020. On average there are only 76 CDS
contracts trading each month (meaning decile portfolios are formed using, on average, seven
CDS contracts), and some months there are as few as 3 actively traded CDS contracts. This

11Although payments are usually made each quarter.
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makes portfolio formation using only a single decile impractical, even for firms with high
levels of bankruptcy risk.

Given this portfolio size limitation and the fact that firms large enough to be in the S&P 500
index fail at a much lower rate than other firms regardless of the random forest estimated
bankruptcy risk, SSDc is formed as follows. In June of each year firms are sorted on my
random forest estimated probability of bankruptcy using accounting and market equity in-
formation released in December of the previous year. SSDc is formed by going long an equal
weighted average of CDS contracts in the three safest deciles and short an equal weighted
average of CDS contracts in the three riskiest deciles. The direction of this sort is consistent
with both SSDe and Friewald et al. (2014). Table 17 shows summary statistics related to
SSDc.

Since SSDc — like SSDo — is constructed using a univariate instead of a bivariate sort
there could again be a concern that the results are driven by size instead of bankruptcy
risk given prominence of size in predicting bankruptcy. Since there are no common CDS
factors for me to regress SSDc on, I again emphasize turnover in the bankruptcy risk deciles
is nearly three times larger than turnover in the size deciles. This implies the results are
unlikely to be driven by size.

Table 17: Bankruptcy Risk CDS Factor: 2002 - 2020

High (1-3) Mid (4-7) Low (8-10) SSDc t(SSDc) Max Drawdown SR
SSDc 0.83% 1.65% 1.71% 1.04% 2.55 8.9% 0.56

Note: This table presents information related to the option bankruptcy risk factor. SSDc is formed by
sorting firms in June on my random forest estimated probability of bankruptcy and going long an equal
weighted average of the three safest deciles and going short an equal weighted average of the three riskiest
deciles. SSDc is the mean monthly returns from the long-short bankruptcy risk factor, t(SSDo) is the
monthly t-statistic associated with the factor. Max drawdown is the maximum peak-to-trough decrease over
the full 22 year sample without regard to a specific time period. SR is the annualized Sharpe ratio. The
number is parentheses ((6-8) for example) represent the component decile portfolios from Table 13.

The return on SSDc is 1.04% per month, on average, and is statistically significant with a
t-statistic of 2.55. The maximum drawdown is also favorable compared to both a buy and
hold return (59%) and SSDe and SSDo (29.4% and 46.8%, respectively). Factor research
in the CDS market is still in its infancy relative to factor research in the equity, bond and
option markets. Despite the existance of some CDS factors (e.g. vaious forms of CDS mo-
mentum — Pazarbasi (2019), Lee, Naranjo and Sirmans (2021)), none are yet commonly
used in factor models. I therefore do not use spanning regressions on SSDc.

Figure 8 shows the cumulative return to $1 invested in SSDc in October 2002 compared
to the momentum strategy and a buy and hold strategy. I present an equivalent graphical
comparison between SSDc formed on my random forest estimated probability of bankruptcy
and CDS factors generated using Altman’s Z-score and a WLS update of the Z-score coeffi-
cients in Appendix E. Although CDS data exists for a limited number of firms beginning in
2001, there were not enough firms with debt insured by CDS contracts to form SSDc until
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October 2002.

There are three notable features of the cumulative return series in Figure 8. First, SSDc

is able to distinguish between firms with low but increasing levels of bankruptcy risk (i.e.
those firms with rapidly increasing debt insurance costs), and firms with bankruptcy risk so
high that CDS contracts do not get materially more expensive during periods of economic
downturns. This is particularly evident during the Great Recession where returns to SSDc

continue to increase despite bankruptcy risk increasing across the entire cross-section of CDS
contracts. Second, SSDc has a convex shape and is becoming more profitable as CDS con-
tracts become more liquid. Over the course of only 19 years 1$ invested in SSDc increased in
value almost 800%. Lastly, the fact that SSDc beats the buy and hold return is noteworthy
since they are formed using the same firms (recall SSDc is formed using only firms from the
S&P 500 index).

Figure 8: Cumulative Returns to DMSc Investment Strategy: 2002 - 2020

4.5 Updating the Factor

Just as it is unreasonable to expect the risk factors included in previous bankruptcy risk
models — including Altman’s Z-score — to remain the dominant predictors of bankruptcy
over time, it is unreasonable to expect my bankruptcy risk model in its current form to ac-
curately predict bankruptcy ad infinitum. Insofar as bankruptcy risk is a predictor of asset
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returns across multiple markets, this means that it is unreasonable to expect my bankruptcy
risk factor to generate statistically significant returns ad infinitum. It will eventually need
to be retrained. How often, and at what points this retraining occurs are both important
and difficult questions to answer.

To investigate this problem, I generate long-short characteristic sorted portfolios using a
subset of bankruptcy risk models proposed from 1968 (Altman’s Z-score) to 2000 (the F
score of Piotroski (2000) and the revised Altman Z (2000)). I choose 2000 as the end date to
allow a long enough out-of-sample period to determine how long, if at all, each bankruptcy
risk model generates returns post-publication. I use the average duration from publication
to the date the factor no longer becomes an effective predictor of returns as an indicator
of how long SSDi (for i = e, b, o, c) is expected to be an effective investment tool without
retraining. The date at which the factor is no longer “effective” is either the date of a peak
in cumulative returns, or the beginning of an extended period of near zero returns.

On average each of the constructed factors takes approximately 21 years post publication
before it is no longer an effective investment vehicle. For SSDi (for i = e, b, o, c) this means
the patterns observed in this paper can be expected to last for more than 20 years without
the underlying bankruptcy risk model being updated. Of course, given the availability of
data and cheap processing power, the underlying bankruptcy risk model can be updated on
a yearly basis. As I have demonstrated in this paper it appears that bankruptcy risk can
predict returns in multiple markets. Being able to more accurately predict bankruptcy risk
by expanding the number of bankrupt observations in the underlying model each year could
increase the effectiveness of the bankruptcy risk factor. One of the benefits of the two-pass
random forest framework used to generate my bankruptcy probability is that it easily allows
for additional observations and additional variables to be included each time the model is
updated.

5 Conclusion

Despite the well-known equilibrium theoretic result that higher average returns are compen-
sation to investors for holding assets with higher levels of risk, empirically this is not always
true. Lower risk equities and credit default swaps — on average — earn higher returns, while
riskier bonds and options — on average — earn higher returns. Motivated by this empirical
fact, I propose a new factor sorted on the probability of bankruptcy as a direct proxy for risk.
Instead of making the subjective choice of which among the myriad bankruptcy risk models
proposed by the literature to use, I introduce a new model of firm bankruptcy built as a
sequence of two random forests — the first is used to select a parsimonious set of predictors
from nearly 250 proposed bankruptcy risk indicators, and the second to estimate bankruptcy
risk.

The estimated probability of bankruptcy has predictive power in four markets — equity
markets (SSDe), bond markets (SSDb), options markets (SSDo) and CDS markets (SSDc).
SSDe earns 0.23% per month and cannot be explained by the CAPM or Fama-French five-
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factor model. Additionally, SSDe provides incremental explanatory power for the cross-
section of returns in the presence of the factor zoo when tested using the two pass lasso
method of Feng, Giglio and Xiu (2020). SSDb earns 0.15% per month and cannot be ex-
plained by the excess bond market return, six popular equity factors, six popular bond
factors, or the union of bond and equity factors. Likewise, SSDo — which earns 1.97% per
month — subsumes the existing Altman Z option factor and cannot be explained by six
popular equity factors or six popular options factors. SSDc also earns 1.04% per month,
and is the first bankruptcy risk CDS factor introduced in the literature.

Just as it is unrealistic to expect the sources of risk that most impacted firms in the 1960s to
be the same sources of risk impacting firms today, it is unrealistic to think my random forest
model in its current form uses risk factors that will best predict bankruptcy ad infinitum.
Although long-short factors generated by sorting on the output of other bankruptcy risk
models successfully predict returns for an average of 20 years post-publication, it may be
beneficial for an investor to update the underlying bankruptcy risk model annually to maxi-
mize returns. The two step procedure used in this paper provides a framework by which the
underlying bankruptcy risk model can be updated to both include new predictors proposed
by the literature and add data points as more firms go bankrupt over time.
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Appendix

Appendix A - Random Forest

The random forest was originally introduced by Breiman (2001). It is an iterative collection
of classification and regression tree (CART) algorithms, which were themselves originally
developed for machine learning purposes by Brieman et al. (1984). Because random forests
are made up of a series of classification and regression trees, they belong to a group of models
known as ensemble models. The predictions of individual trees, known as “base learners”
are aggregated to make the final prediction. If the random forest is used for classification,
predictions are made according to majority rule. If the random forest is used for regres-
sion, predictions are averaged over the component trees. Because the prediction of so many
base learners are combined, predictions made by random forests are much more stable than
predictions of individual trees. In this way the random forest model trades off bias in the
prediction for a drastic reduction in the variance.

Each tree in the forest is grown according to the CART algorithm, which can be sum-
marized as follows. Beginning at the root node, the data is split (splits are always binary)
on a variable chosen from a bootstrap random sample of the full list of explanatory variables.
The resulting two groups are called “branches”. The split criteria is selected as to make each
resulting group (branch) as homogeneous as possible, where homogeneity is defined with
respect to an “impurity function”. The impurity function is essentially the loss function to
be minimized. The process of making these splits is known as “growing the tree”, and splits
are not required to be unique. For example, the first split and the third split could be on the
same variable if further splitting on an already used variable minimizes the impurity function.
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The CART algorithm continues to split the data until a stopping criteria is reached. Exam-
ples of stopping criteria include a maximum number of layers (steps), a minimum number of
observations in each group after a split and a minimum value of the impurity function. Splits
are made in a greedy manner. Greedy algorithms choose paths which are locally optimal,
and are therefore not guaranteed to arrive at a globally optimal solution. In practice trees
are grown such that they are overfit and then “pruned”. This process is undertaken because
it is possible for a branch close to the root node to not reduce the impurity function by a
meaningful amount, but have a child node that splits the data in a way that significantly
improves the tree’s predictive accuracy. Pruning the tree in this way ensures these child
nodes are reached. The terminal nodes of the tree are known as “leaf” nodes. Predictions
are made according to the mean value in each leaf node.

Formally, random forests can be represented mathematically using the following indicator
function

f(xi, ϕ,N,K,L) =
1

N

N∑
n=1

K∑
k=1

ϕk1xi∈Ck(L) (3)

where xi is the raw input, ϕ is the mean value of the dependent variable in leaf node k, N
is the number of trees in the forest, and K and L describe each tree’s number of leaf nodes
and depth. The indicator function makes clear that each data point input into the model
can only reach one leaf node (leaf node k).

Impurity functions can be any function. However, common impurity functions include the
regular L2 loss function

L(ϕ,C) =
1

|C|
∑
xi∈C

(xi − ϕ)2 (4)

where C is the number of observations which fall in leaf node k and the remaining variables
and parameters are defined as before.

Appendix B - Lasso

The least absolute shrinkage and selection operator (lasso) was developed by Tibshirani in
1996. It is a regularized regression which shrinks OLS coefficients towards zero and allows a
subset of those coefficients to equal zero — thus acting as a variable selection tool.

Formally, suppose there is a set of data with T observations and P predictors. Further
suppose that y = (y1, ..., yT )

T are the dependent variables (called responses in the machine
learning literature) and X = (x1|...|xP ) is the matrix of independent variables (called pre-
dictors in the machine learning literature) where each xj has T observations. The lasso
solves the objective function
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(β̂, λ) = arg min||y − Xβ||22 + λ||β||1 (5)

where λ is the regularization term penalizing model complexity, ||β||1 =
∑P

j=1 |β| is the L1

norm and ||β||2 =
√∑P

j=1 β
2 is the L2 norm. It is clear from equation 5 that higher levels

of λ are associated with stronger regularization. When λ = ∞ all coefficients are regularized
to zero and the mean value of y is the predicted value for all inputs. When λ = 0 the lasso
reverts to ordinary least squares.

There is no closed form solution to the lasso objective function, and the numerical solu-
tion — efficiently obtained using the LARS algorithm (Efron et al. (2004)) — depends on
the strength of the regularization. The strength of the regularization is chosen in a data
driven way using cross-validation where the lasso is prevented from overfitting by testing the
pseudo out-of-sample predictive ability on data not used to train the model. This pseudo
out-of-sample data is rotated at each iteration of the cross-validation process so the lasso is
both trained and tested on the entire data set. The value of λ which best predicts pseudo
out-of-sample, on average across all iterations, is selected as optimal.
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Appendix C - Bankruptcy Predictor Variable Construction

This appendix lists the full set of bankruptcy predictors used in this study along with the
original source of the variable and a brief description of its construction. Studies that
emphasize the importance of components of constructed variables (i.e. current assets as
a component of the current ratio), those components are also included even if they are not
the primary focus of the author’s paper.

Table 18: Bankruptcy Predictor Variables

Name Source Description

LiqAssets Altman (1968) Working capital scaled by total assets
CumProfit Altman (1968) Retained earnings scaled by total assets
ScaleEBIT Altman (1968) Earnings before interest and taxes scaled by total

assets
Solvency Altman (1968) Market value of equity scaled by book value of debt
CapTurn Altman (1968) Sales scaled by total assets
CurrentRat Tamari (1966) Current assets scaled by current liabilities
QuickRatio Tamari (1966) Liquid current assets scaled by current liabilities
DebtEquity Ogachi et al.,

(2020)
Total liabilities scaled by total shareholder equity

PSolvency Altman (1983) Book value of equity scaled by book value of total
liabilities

ROA Piotroski (2000) Net income before extraordinary items scaled by
total assets

OpCash Piotroski (2000) Cash flows from operation scaled by total assets
ChgROA Piotroski (2000) Year over year change in net income before ex-

traordinary items scaled by total assets
AccrualRat Piotroski (2000) Net income in excess of cash flows from operations

scaled by total assets
ChgLev Piotroski (2000) Year over year change in total debt scaled by total

assets
ChgCurRat Piotroski (2000) Year over year change in current assets scaled by

current liabilities
OfferEq Piotroski (2000) Year over year change in shares outstanding
MargRat Piotroski (2000) Gross margin scaled by total assets
ChgMargRat Piotroski (2000) Year over year change in gross margin scaled by

total assets
ChgCapTurn Piotroski (2000) Year over year change in sales scaled by total assets
SIZE Ohlson (1980) Total assets scaled by the GNP price deflator
Leverage Ohlson (1980) Total debt scaled by total assets
TLTA Ohlson (1980) Total liabilities scaled by total assets

Continued on next page
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Name Source Description

OENEG Ohlson (1980) Indicator variable equal to one if total liabilities is
larger than total assets

NITA Ohlson (1980) Net income scaled by total assets
FUTL Ohlson (1980) Funds from operations scaled by total liabilities
INTWO Ohlson (1980) Year over year percentage change in income
BEME Fama and French

(1993)
Book equity scaled by market equity

Debt Clayton and Ravid
(2002)

Total debt

IntCovRat Clayton and Ravid
(2002)

Earnings before interest and taxes scaled by total
interest payments

LogSale Clayton and Ravid
(2002)

Log of total sales

Tax Allayannis et al.,
(2003)

Total taxes paid

ME Allayannis et al.,
(2003)

Total market equity

TanAssets Allayannis et al.,
(2003)

Percentage of total assets made up of tangible as-
sets

CFFO Gentry et al.,
(1985)

Cash flows from operations

OpLoss Hopwood et al.,
(1994)

Total operating expenses minus gross profits

Industry Sun (2007) 1-digit industry SIC code
CASALES Sun (2007) Current assets scaled by sales
CATA Sun (2007) Current assets scaled by total assets
PBTCL Taffler (1977) Profits before taxes scaled by current liabilities
CATL Taffler (1977) Current assets scaled by total liabilities
CLTA Taffler (1977) Current liabilities scaled by total assets
NoCredInt Taffler (1977) Ratio of quick assets in excess of total liabilities

and sales in excess of profits and depreciation, di-
vided by 365

OCLCL Marais (1979) Operating cash flows scaled by current liabilities
OCLCL2 Beaver (1966) Operating cash flows scaled by sales
CLCR Beaver (1966) Operating cash flows in excess of dividends paid

scaled by current liabilities
LTDCR Beaver (1966) Operating cash flows in excess of dividends paid

scaled by long term debt
DebtEq2 Warner (1977) Total debt scaled by total shareholder equity
STDebtEq Altman et al.,

(2017)
Total short-term debt scaled by total shareholder
equity

Continued on next page
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Name Source Description

IntCovRat2 Rose-Green and
Lovata (2013)

The sum of operating cash flows, interest payments
and taxes scaled by interest payments

DebtEbitda Shaked and
Orelowitz (2017)

Total debt scaled by earnings before interest,
taxes, depreciation and amortization

GPTA Philosophov et al.,
(2008)

Gross profits scaled by total assets

WorkCap Philosophov et al.,
(2008)

Current assets minus current liabilities

LTDTA Philosophov et al.,
(2008)

Total long-term debt scaled by total assets

PartCLRat Philosophov et al.,
(2008)

Current liabilities minus long-term debt due in one
year scaled by total assets

IntRat Philosophov et al.,
(2008)

Interest payments scaled by total assets

MLDTA Philosophov et al.,
(2008)

Long-term debt due in one year scaled by total
assets

MLDTA2 Philosophov et al.,
(2008)

Long-term debt due in two years scaled by total
assets

MLDTA3 Philosophov et al.,
(2008)

Long-term debt due in three years scaled by total
assets

MLDTA4 Philosophov et al.,
(2008)

Long-term debt due in four years scaled by total
assets

MLDTA5 Philosophov et al.,
(2008)

Long-term debt due in five years scaled by total
assets

FinLoss Pindado et al.,
(2008)

Earnings before interest, taxes, depreciation and
amortization minus financial expenses

ChgME Pindado et al.,
(2008)

Year over year change in the market value of equity

Return Aharony et al.,
(1980)

One year lagged mean returns

VarRet Aharony et al.,
(1980)

Year over year change in the volatility of returns

RelativeME Shumway (2001) Market equity scaled by the sum of all stock mar-
ket equity

TradeCred Aktas et al., (2012) Level of trade credit as proxied by accounts
payable

TobinQ Chen et al., (2012) Tobin’s Q
Payout Chen et al., (2012) The sum of dividends and repurchases scaled by

total assets
CFDebtRat Beaver (1966) Cash flows scaled by total debt

Continued on next page
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Name Source Description

Segments Singhal and Zhu
(2013)

The number of business segments

LogAsset Singhal and Zhu
(2013)

Log of total assets

IATS Singhal and Zhu
(2013)

Intangible assets scaled by sales

NetIncome Singhal and Zhu
(2013)

Net income

LabProd Ho et al., (2013) Total employment scaled by total assets
WCMan Kieschnick et al.,

(2013)
The sum of accounts receivable, accounts payable
and inventory

ChgSale Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Year over year percentage change in sales

FinProf Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Gross profits scaled by shareholder equity

WorkCap2 Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The sum of shareholder equity, provision for risk
and expenses and long-term debt minus fixed as-
sets and other non-current assets

WorkCapReq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The sum of subscribed shares not paid in, accrued
expenses and bank loans minus the sum of short-
term financial investments, cash, accrued income
and current liabilities

Treasury Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Stock holdings plus cash minus loans

Equilibrium Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The sum of shareholder equity, non-current liabili-
ties and long-term debt scaled by total fixed assets

WCR2 Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “WorkCapReq” scaled by sales

Treasury2 Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “Treasury” scaled by sales

DebtSale Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Total debt scaled by sales
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Name Source Description

Debtness Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Liabilities scaled by the sum of liabilities and
shareholder equity

EqCapRat Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Shareholder equity scaled by non-current liabilities

PayCap Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The sum of long-term debt and current liabilities
scaled by the sum of sales, depreciation and oper-
ating and investing provisions

ShareFund Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Profits scaled by shareholder equity

RetCapEmp Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Profits before interest payments scaled by the sum
of shareholder equity and non-current liabilities

Margin Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Profits scaled by asset turnover

NetTurn Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Operating revenue scaled by the sum of share-
holder equity and non-current liabilities

IntCover Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Operating profits scaled by interest payments

StockTurn Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Operating revenue scaled by asset turnover

ShareLiq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Shareholder equity scaled by non-current liabilities

Gearing Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The sum of non-current liabilities and loans scaled
by shareholder equity

ChgSaleSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Squared year over year percentage change in sales

CapTurnSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Squared capital turnover ratio
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Name Source Description

GPTASq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The square of profits scaled by total assets

FinProfSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The square of profits scaled by shareholder equity

WorkCap2Sq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “WorkCap2” squared

WCRSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “WorkCapReq” squared

TreasurySq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “Treasury” squared

EquilSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “Equilibrium” squared

WCSaleSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The square of working capital scaled by sales

WCR2Sq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “WCR2” squared

Treas2Sq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “Treasury2” squared

DebtSaleSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The square of debt scaled by sales

DebtnessSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “Debtness” squared

EqCapRatSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “EqCapRat” squared

PayCapSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “PayCap” squared
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Name Source Description

QRSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The squared quick ratio

CRSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The squared current ratio

ShareFundSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “ShareFund” squared

RCESq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “RetCapEmp” squared

GPTASq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The square of profits scaled by total assets

MarginSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The square of profits scaled by asset turnover

NetTurnSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “NetTurn” squared

IntCoverSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “IntCover” squared

StTurnSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “StockTurn” squared

ShareLiqSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “ShareLiq” squared

GearSq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

Constructed ratio “Gearing” squared

WCTASq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The square of working capital scaled by total assets

EBITTASq Acosta-Gonzalez
and Fernandez-
Rodriquez (2014)

The square of earnings before interest and taxes
scaled by total assets

NATCTC Altman et al.,
(1977)

Net available for total capital scaled by total cap-
ital
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Name Source Description

SaleTC Altman et al.,
(1977)

Sales scaled by total capital

EBITSale Altman et al.,
(1977)

Earnings before interest and taxes scaled by sales

NATCSale Altman et al.,
(1977)

Net available for total capital scaled by sales

LogTanAss Altman et al.,
(1977)

Log of tangible assets

LogIntCov Altman et al.,
(1977)

The log of earnings before interest and taxes scaled
by interest payments

LogWCLTD Altman et al.,
(1977)

Log of working capital scaled by long-term debt

WCLTD Altman et al.,
(1977)

Working capital scaled by long-term debt

FCCR Altman et al.,
(1977)

The sum of earnings before interest and taxes and
fixed charges scaled by the sum of fixed charges
before taxes and interest payments

EBITDebt Altman et al.,
(1977)

Earnings before interest and taxes scaled by debt

CFFC Altman et al.,
(1977)

Cash flows scaled by fixed charges

WCCE Altman et al.,
(1977)

Working capital scaled by cash expenses

BETC Altman et al.,
(1977)

Book equity scaled by total capital

METC Altman et al.,
(1977)

Market value of equity scaled by total capital

EBITDrop Altman et al.,
(1977)

Year over year change in earnings before interest
and taxes

MDrop Altman et al.,
(1977)

Year over year change in profits

SaleFA Altman et al.,
(1977)

Sales scaled by fixed assets

DivPayRat Wilcox (1971) Total dividends paid scaled by net income
LiqValueIF Wilcox (1976) Net income minus total dividends paid
LiqValue Wilcox (1976) Sum of real estate, equipment and inventory
ChgAsset Wilcox (1976) Year over year change in total assets
QATA Beaver (1968) Quick assets scaled by total assets
CashTA Beaver (1968) Total cash holdings scaled by total assets
QACL Beaver (1968) Quick assets scaled by current liabilities
QASale Beaver (1968) Quick assets scaled by sales
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Name Source Description

WCSale Beaver (1968) Working capital scaled by sales
CashSale Beaver (1968) Total cash holdings scaled by sales
EATTA Beaver (1966) Earnings after taxes scaled by total assets
QuickInv Beaver (1966) Quick assets scaled by inventory
OpMargin Edminster (1972) Operating earnings scaled by revenue
InvWC Edminster (1972) Inventory scaled by working capital
CADebt Edminster (1972) Current assets scaled by total debt
FAEquity Edminster (1972) Fixed assets scaled by total shareholder equity
CLEquity Edminster (1972) Current liabilities scaled by total shareholder eq-

uity
OwnAssets Edminster (1972) The sum of shareholder equity and long-term debt

scaled by fixed assets
InvSale Edminster (1972) Inventory scaled by total sales
FASale Edminster (1972) Fixed assets scaled by total sales
TASale Edminster (1972) Total assets scaled by sales
SESale Edminster (1972) Total shareholder equity scaled by sales
EBITSE Edminster (1972) Earnings before interest and taxes scaled by total

shareholder equity
EBITDD Edminster (1972) The sum of earnings before interest and taxes and

depreciation scaled by total debt
CATOR Altman (1973) Current assets scaled by total operating revenue
IBITTA Altman (1973) Income before interest and taxes scaled by total

assets
RevProp Altman (1973) Operating revenue scaled by the value of total

property
OpEff Altman (1973) Operating expenses scaled by operating revenue
GrowRate3 Altman (1973) Three year percentage growth in operating revenue
LiqAss Sinkey (1975) The sum of cash and treasury securities scaled by

total assets
LoanTA Sinkey (1975) Total loans scaled by total assets
OEOI Sinkey (1975) Operating expenses scaled by operating income
LoanRev Sinkey (1975) Total loans scaled by total revenue
TresRev Sinkey (1975) Total holdings of U.S. treasury securities scaled by

revenue
IntRev Sinkey (1975) Total interest paid scaled by revenue
NIBTTC Korobow and Stuhr

(1975)
Net income before taxes scaled by total capital

DivTC Korobow and Stuhr
(1975)

Dividends paid scaled by total capital

BorrowTC Korobow and Stuhr
(1975)

Total borrowing scaled by total capital
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Name Source Description

TCTA Korobow and Stuhr
(1975)

Total capital scaled by total assets

OccExpTA Korobow and Stuhr
(1975)

Net occupancy expenses scaled by total assets

TresTA Korobow and Stuhr
(1975)

Total holdings of U.S. treasury securities scaled by
total assets

LoanCA Korobow and Stuhr
(1975)

Loans scaled by current assets

LLTC Martin (1977) The sum of loans and leases scaled by total capital
CATC Martin (1977) Current assets scaled by total capital
NITACash Martin (1977) Net income scaled by the difference between total

assets and cash holdings
LoanTAC Martin (1977) Total loans scaled by the difference between total

assets and cash holdings
NLATACash Martin (1977) Net liquid assets scaled by the difference between

total assets and cash holdings
Loans Martin (1977) Total loans held
NIMEA Martin (1977) Net interest margin scaled by earning assets
ProdEff Martin (1977) Non-interest expenses scaled by the difference be-

tween operating revenue and interest expenses
DivType Martin (1977) Common stock dividends scaled by the difference

between net income and preferred stock dividends
NIATTA Altman and Lorris

(1976)
Net income after taxes scaled by total assets

LLSE Altman and Lorris
(1976)

The sum of total liabilities and loans scaled by
total shareholder equity

EndBegCap Altman and Lorris
(1976)

The difference between this year’s capital and cap-
ital additions scaled by the prior year’s capital

CapLag Altman and Lorris
(1976)

One period lagged capital

NIATCap Altman and Lorris
(1976)

Net income after taxes scaled by the prior year’s
capital

NetGross Altman (1977) Net operating income scaled by gross operating in-
come

NetTotal Altman (1977) Net income scaled by total income
OPTA Altman (1977) Total operating expenses scaled by total assets
NWTA Altman (1977) Net worth scaled by total assets
PPETA Altman (1977) The total value of plants property and equipment

scaled by total assets
NOINI Altman (1977) Non-operating income scaled by net income
NINW Altman (1977) Net income scaled by net worth
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Name Source Description

OfficeExp Altman (1977) Office building expenses scaled by operating in-
come

ESTA Altman (1977) Earned surplus scaled by total assets
PaidEquity Santomero and

Vinso (1977)
Total shareholder equity

TotCap Santomero and
Vinso (1977)

Total capital

CapAssRat Santomero and
Vinso (1977)

Capital scaled by total assets

NISale Lee et al., (2012) Net income scaled by total sales
EBITDATA Lee et al., (2012) Earnings before interest and taxes, depreciation

and amortization scaled by total assets
SETA Lee et al., (2012) Total shareholder equity scaled by total assets
SEIATA Lee et al., (2012) The difference between shareholder equity and in-

tangible assets scaled by total assets
Lev2 Lee et al., (2012) Total assets minus intangible assets, cash holdings

and the value of land and buildings
CLCTA Lee et al., (2012) The difference between current liabilities and cash

holdings scaled by total assets
ARSale Lee et al., (2012) Accounts receivable scaled by total sales
APSale Lee et al., (2012) Accounts payable scaled by total sales
InvGrow Lee et al., (2012) Year over year percentage change in inventory
LTGrow Lee et al., (2012) Year over year percentage change in total liabilities
CashGrow Lee et al., (2012) Year over year percentage change in cash holdings
aftret eq WRDS Ratio After-tax return on average common equity
aftret equity WRDS Ratio After-tax return on total shareholder equity
capital ratio WRDS Ratio Fraction of capital made up by debt
cash lt WRDS Ratio Cash balance scaled by total liabilities
cash ratio WRDS Ratio Cash and cash equivalents scaled by current liabil-

ities
curr debt WRDS Ratio Current liabilities scaled by total liabilities
de ratio WRDS Ratio Total debt scaled by total equity
debt assets WRDS Ratio Debt to assets ratio - different specification to con-

structed ratio “Leverage” above
debt at WRDS Ratio Alternative specification of the debt to assets ratio
debt capital WRDS Ratio Total debt scaled by total capital
debt ebitda WRDS Ratio Total debt scaled by earnings before interest,

taxes, depreciation and amortization
evm WRDS Ratio Enterprise value scaled by earnings before interest,

taxes, depreciation and amortization
gprof WRDS Ratio Alternative specification of profits scaled by assets
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Name Source Description

invt act WRDS Ratio Inventory scaled by current assets
lt debt WRDS Ratio Long-term debt scaled by total liabilities
lt ppent WRDS Ratio Total liabilities scaled by total tangible assets
profit lct WRDS Ratio Profits before depreciation scaled by current liabil-

ities
quick ratio WRDS Ratio Acid test ratio
rd sale WRDS Ratio Research and development expenditures scaled by

total sales
rect act WRDS Ratio Total receivables scaled by current assets
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Appendix D - Factor Zoo Selected Variables

Table 19: Feng, Giglio & Xiu Factor Zoo Selected Variables

Name Source Description

AdExp
Chan, Lakonishok
and Sougiannis (2001)

Advertising expenditures

BMdec Fama and French (1992)
Book-to-market using December
market equity

ChInvIA Abarbanell and Bushee (1998)
Change in capital expenditures above
or below an industry benchmark

ChNWC Soliman (2008) Change in working capital
ChTax Thomas and Zhang (2011) Quarterly changes in tax expenses

CompEquIss Daniel and Titman (2006)
Share issuance for both cash and services
(i.e. including employee stock plans)

DivSeason
Hartzmark and
Salomon (2013)

Month in which a dividend is expected
to be issued

EarningsSurprise
Foster, Olsen
and Shevlin (1984)

Sign and magnitude of earnings
forecast errors

EarnSupBig Hou (2007)
Sign and magnitude of earnings forecast
errors for large firms

EBM
Penman, Richardson
and Tuna (2007)

Net operating assets scaled by price

EP Basu (1977) Price earnings ratio

NetDebtPrice
Penman, Richardson
and Tuna (2007)

Market value of debt scaled by market
value of equity

FirmAge Barry and Brown (1984) Months since listed on an exchange

RD
Chan, Lakonishok
and Sougiannis (2001)

R&D expenditures scaled by
market capitalization

VolMkt Haugen and Baker (1996) Trading volume scaled by market equity
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Appendix E - Altman Z, WLS Re-Estimation and Random Forest
Portfolio Comparisons

Figure 9: Comparison of SSDe, Altman and WLS Re-Estimation of Altman Cumulative
Returns
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Figure 10: Comparison of SSDe, Altman and WLS Re-Estimation of Altman Cumulative
Returns
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Figure 11: Comparison of SSDe, Altman and WLS Re-Estimation of Altman Cumulative
Returns
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Figure 12: Comparison of SSDe, Altman and WLS Re-Estimation of Altman Cumulative
Returns
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